

DIPLOMA IN COMPUTER APPLICATION

DCA-04

WEB -DESIGN

Block

3

JAVA SCRIPT

Unit -5

Getting Started

Unit -6

Advanced Java Script

Dr.P.K.Behera (Chairman)

Reader in Computer Science

Utkal University , Odisha

DrJ.R.Mohanty (Member)

Prof And HOD

KIIT University, Odisha
ShPabitranandaPattnaik (Member)
Scientist ςE,NIC

NIC, ,BhubaneswarOdisha

Sh Malaya Kumar Das (Member)

Scientist ïE , NIC

Bhubaneswar , Odisha

Dr.BhagirathiNayak (Member)

Professor And Head (IT & System)

Sri Sri University, Odisha

Dr.ManoranjanPradhan (Member)

Professor and Head

G.I.T.A

Bhubaneswar, Odisha

Mr .V.S.Sandilya (Convener)

Academic Consultant I.T

Odisha State Open University,

Sambalpur,Odisha

EXPERT COMMITTEE

DIPLOMA IN COMPUTER APPLICATION

COURSE WRITER

Mr. Dhruba Charan Pradhan Mr. Sushant Kumar Mohanty

Department of Computer Science, Department of Information Technology,

OAVS, Th.Rampur, Bhabanipatna Shailabala Womenôs College, Cuttack,

Kalahandi, Odisha Odisha

Unit -5

Getting Started

Learning objectives:

After the Completion of this unit you should be able to know

@ The importance of JavaScript

@ Features of Java Script

@ Writing format in Java Script

@ Variable declaration & initialization

@ Types of operators

@ Conditional statements

@ Repetitive statements

@ Dialog box in Java Script

Structure

5.1 Introduction to Java Script

5.1.1 Definition

5.1.2 History

5.1.3 Why study JavaScript?

5.1.4 What can JavaScript do?

5.1.5 Advantages of JavaScript

5.1.6 Browser Compatibility

5.2 JavaScript Syntax

5.3 Enabling JavaScript in Browsers

5.3.1 JavaScript in Internet Explorer

5.3.2 JavaScript in Firefox

5.3.3 JavaScript in Chrome

5.3.4 JavaScript in Opera

5.4 Placing JavaScript

5.4.1 JavaScript in <head>...</head> section.

5.4.2 JavaScript in <body>...</body> section.

5.4.3 JavaScript in <body> and <head> sections.

5.4.4 JavaScript in External File.

5.5 Variables

5.5.1 Definition

5.5.2 Declaration of variable

5.5.3 Variable Initialization

5.5.4 JavaScript Variable Scope

5.6 Operators

5.6.1 Definition

5.6.2 Types of Operator

 5.6.2.1 Arithmetic Operator

5.6.2.2 Comparison Operators

5.6.2.3 Logical (or Relational) Operators

5.6.2.4 Assignment Operators

5.6.2.5 Conditional (or ternary) Operators

5.7 IF éELSE

 5.7.1 Flow Chart of if-else

 5.7.2 if Statement

 5.7.3 if...else Statement

 5.7.4 if...else if... Statement

5.8 Switch Case

5.8.1 Flow Chart

5.8.2 Syntax

5.9 Loops

5.9.1 Types of loop

5.9.2 doé while loop

5.9.3 while loop

5.9.4 for loop

5.10 Functions

5.10.1 Function Definition

5.10.2 Calling a Function

5.10.3 Function Parameters

5.10.4 The Return statements

5.10.5 Nested Functions

5.11 Events and event handling

5.11.1 onclick Event Type

5.11.2 onsubmitEvent Type

5.11.3 onmouseover and onmouseout

5.11.4 HTML 5Standard Events

5.12 Cookies

5.12.1 How it is work ?

5.12.2 Storing Cookies

5.12.3 Reading Cookies

5.12.4 Setting Cookies Expiry Date

5.12.5 Deleting Cookies

5.13 Page Redirection

5.13.1 JavaScript Page Refresh

5.13.2 Auto Refresh

5.13.3 How Page Re-direction Works?

5.14 Dialog Box

5.14.1 Alert Dialog Box

5.14.2 Confirmation Dialog Box

5.14.3 Prompt Dialog Box

5.15 Void Keyword

5.16 Printing webpage using JavaScript

5.17 Let us sum up

5.18 References

5.19 Check your progress- possible answers

Odisha State Open University Page 1

5.1 Introduction

JavaScript is most commonly used as a client side scripting language. This

means that JavaScript code is written into an HTML page. When a user requests

an HTML page with JavaScript in it, the script is sent to the browser and it's up to

the browser to do something with it. JavaScript has nothing to do with Java.

JavaScript and Java are completely different languages, both in concept and

design. JavaScript programs are run by an interpreter built into the user's web

browser (not on the server). It is lightweight interpreted programming language

and most commonly used as a part of web pages, whose implementations allow

client-side script to interact with the user and make dynamic pages. JavaScript is a

very free-form language compared to Java.

5.1.1 Definition:

Java Script is a dynamic scripting computer programming language used

to make web pages interactive in HTML pages.

5.1.2 History

JavaScript was developed by Brendan Eich in 1995 at Netscape

Corporation (LiveScript), when Eich was working for Netscape

Communications Corporation and became an ECMA (European Computer

Manufacturers Association) standard in 1997. The technology was first

called Mocha, then Live Script. Eventually it was named JavaScript to

follow the marketing of another programming language called Java. Java

was developed by Sun Microsystems and is a completely different

programming language and technology. JavaScript was a competitive

technology to VBScript, a Microsoft product. While VBScript worked

only on the Internet Explorer browser, JavaScript was supported on other

browsers, too. This made JavaScript a preferred language for global

applications.ECMA-262 is the official name. ECMA Script 6 (released in

June 2015) is the latest JavaScript version.

5.1.3 Why Study JavaScript?

JavaScript is one of the 3 languages all web developers must learn:

1. HTML to define the content of web pages.

2. CSS to specify the layout of web pages.

3. JavaScript to program the behavior of web pages.

5.1.4 What can JavaScript Do?

ü JavaScript can dynamically modify an HTML page.

ü JavaScript can react to user input.

ü JavaScript can validate user input.

ü JavaScript can be used to create cookies

ü JavaScript is a full-featured programming language

ü JavaScript user interaction does not require any communication

with the server

Odisha State Open University Page 2

5.1.5 Advantages of JavaScript.

The advantages of using JavaScript are:

ü Less server interaction: You can validate user input before

sending the page off to the server. This saves server traffic,

which means fewer loads on your server.

ü Immediate feedback to the visitors: They don't have to wait for

a page reload to see if they have forgotten to enter something.

ü Increased interactivity: You can create interfaces that react

when the user hovers over them with a mouse or activates them

via the keyboard.

ü Richer interfaces: You can use JavaScript to include such items

as drag-and-drop components and sliders to give a Rich

Interface to your site visitors.

5.1.6 Browser Compatibility.

JavaScript is widely supported. It is available in the following browsers:

ü Netscape Navigator (beginning with version 2.0)

ü Microsoft Internet Explorer (beginning with version 3.0)

ü Firefox

ü Safari

ü Opera

ü Google Chrome

5.2 Java Script syntax

JavaScript can be implemented using JavaScript statements that are placed

within the <script>... </script> HTML tags in a web page. You can place the

<script> tags, containing your JavaScript, anywhere within you web page, but it

is normally recommended that you should keep it within the <head> tags. The

<script> tag alerts the browser program to start interpreting all the text between

these tags as a script. A simple syntax of your JavaScript will appear as follows.

<Script ...>

 JavaScript code

</script>

The script tag takes two important attributes:

ü Language: This attribute specifies what scripting language you are using.

Typically, its value will be javascript. Although recent versions of HTML

(and XHTML, its successor) have phased out the use of this attribute.

ü Type: This attribute is what is now recommended to indicate the scripting

language in use and its value should be set to "text/javascript".So your

JavaScript syntax will look as follows.

Odisha State Open University Page 3

Syntax

<script language="javascript" type="text/javascript">

 JavaScript code

</script>

5.3 Enabling Java Script in Browsers

All the modern browsers come with built-in support for JavaScript. Frequently,

you may need to enable or disable this support manually. This chapter explains

the procedure of enabling and disabling JavaScript support in your browsers:

Internet Explorer, Firefox, chrome, and Opera.

5.3.1 JavaScript in Internet Explorer

Here are the steps to turn on or turn off JavaScript in Internet Explorer:

1. Follow Tools ĄInternet Options from the menu.

2. Select Security tab from the dialog box.

3. Click the Custom Level button.

4. Scroll down till you find the Scripting option.

5. Select Enable radio button under Active scripting.

6. Finally click OK and come out.

Tips: To disable JavaScript support in your Internet Explorer, you need to select

Disable radio button under Active scripting.

5.3.2 JavaScript in Firefox

Here are the steps to turn on or turn off JavaScript in Firefox:

1. Open a new tab Ą type about: config in the address bar.

2. Then you will find the warning dialog. Select Iôll be careful, I promise!

3. Then you will find the list of configure options in the browser.

4. In the search bar, type JavaScript. Enabled.

5. There you will find the option to enable or disable JavaScript by right-

clicking on the value of that option -> select toggle.

Tips:If JavaScript. Enabled is true; it converts to false upon clicking toogle. If

javascript is disabled; it gets enabled upon clicking toggle.

5.3.3 JavaScript in Chrome

Here are the steps to turn on or turn off JavaScript in Chrome:

ü Click the Chrome menu at the top right hand corner of your browser.

ü Select Settings.

ü Click Show advanced settings at the end of the page.

ü Under the Privacy section, click the Content settings button.

ü In the "Javascript" section, select "Do not allow any site to run

JavaScript" or "Allow all sites to run JavaScript (recommended)".

Odisha State Open University Page 4

5.3.4 JavaScript in Opera

Here are the steps to turn on or turn off JavaScript in Opera:

Á Follow Tools-> Preferences from the menu.

Á Select advanced option from the dialog box.

Á Select Content from the listed items.

Á Select Enable JavaScript checkbox.

Á Finally click OK and come out.

Tips: To disable JavaScript support in Opera, you should not select the Enable

JavaScript checkbox.

5.4 Placing JavaScript

JavaScript code can be inserted into anywhere in an HTML document by

using the SCRIPT tag. You can have any number of scripts. To include

JavaScript in an HTML file are as follows:

1. Script in <head>...</head> section.

2. Script in <body>...</body> section.

3. Script in <body>...</body> and <head>...</head> sections.

4. Script in an external file and then include in <head>...</head> section.

5.4.1 JavaScript in <head>...</head> Section

If you want to have a script run on some event, such as when a user clicks

somewhere, then you will place that script in the head as follows.

This code will produce the following results:

Odisha State Open University Page 5

5.4.2 JavaScript in <body>...</body> Section

If you need a script to run as the page loads so that the script generates content in

the page, then the script goes in the <body> portion of the document. In this case,

you would not have any function defined using JavaScript. Take a look at the

following code.

This code will produce the following results:

Odisha State Open University Page 6

5.4.3 JavaScript in <body> and <head> Sections

You can put your JavaScript code in <head> and <body> section

altogether as follows.

This code will produce the following results:

Odisha State Open University Page 7

5.4.4 JavaScript in External File

You are not restricted to be maintaining identical code in multiple HTML

files. The script tag provides a mechanism to allow you to store JavaScript in an

external file and then include it into your HTML files. Here is an example to show

how you can include an external JavaScript file in your HTML code using script

tag and its src attribute.

<html>

<head>

<script type="text/javascript" src="filename.js" ></script></head>

<body>

 ééé.

 ééé.

</body>

</html>

To use JavaScript from an external file source, you need to write all your

JavaScript source code in a simple text file with the extension ".js" and then

include that file as shown above.

For example, you can keep the following content in filename.js file and then you

can use sayHello function in your HTML file after including the filename.js file.

Function sayHello()

{

alert("Hello World")

}

Odisha State Open University Page 8

CHECK YOUR PROGRESS 1

Q1. What is Java Script?

Answer:__

Q2Who developed java script?

Answer:__

Q3. What can java script do?

Answer:__

Q4. Write the syntax of java script ?

Answer:__

Q5. Write the steps to turn on or turn off JavaScript in Internet Explorer.

Answer:__

5.5 Variables

Like many other programming languages, JavaScript has variables. Variables can

be thought of as named containers. You can place data into these containers and

then refer to the data simply by naming the container. Before you use a variable in

a JavaScript program, you must declare it. Variables are declared with the var

keyword as follows.

5.5.1 Definition

It is a quantity whose value can be change during the execution of the

program.

Odisha State Open University Page 9

5.5.2 Declaration of variable

Variables are declared with the var keyword as follows.

var money;

var name;

You can also declare multiple variables with the same var keyword as follows:

var money, name;

5.5.3Variable Initialization

Storing a value in a variable is called variable initialization. You can do

variable initialization at the time of variable creation or at a later point in time

when you need that variable. For instance, you might create variable named

money and assign the value 523.50 to it later. For another variable, you can assign

a value at the time of initialization as follows.

var name = "Shan";

var money;

money = 523.50;

Tips:Use the var keyword only for declaration or initialization, once for the life of

any variable name in a document. You should not re-declare same variable twice.

JavaScript is untyped language. This means that a JavaScript variable can hold a

value of any data type. Unlike many other languages, you don't have to tell

JavaScript during variable declaration what type of value the variable will hold.

The value type of a variable can change during the execution of a program and

JavaScript takes care of it automatically.

5.5.4 JavaScript Variable Scope

The scope of a variable is the region of your program in which it is defined.

JavaScript variables have only two scopes.

ü Global Variables: A global variable has global scope which means it can

be defined anywhere in your JavaScript code.

ü Local Variables: A local variable will be visible only within a function

where it is defined. Function parameters are always local to that function.

Within the body of a function, a local variable takes precedence over a

global variable with the same name. If you declare a local variable or

function parameter with the same name as a global variable, you

effectively hide the global variable. Take a look into the following

example.

Odisha State Open University Page 10

<script type="text/javascript">

var myVar = "global"; // Declare a global variable

function checkscope()

{

var myVar = "local"; // Declare a local variable

document.write(myVar);

}

</script>

5.6 Operators

5.6.1 Definition

 An Operator is a symbol that tells to perform specific operation.

Let us take a simple expression 5 + 3 is equal to 8. Here 5 and 3 are called

operands and ó+ô is called the operator.

5.6.2 Types of Operator

JavaScript supports the following types of operators.

1. Arithmetic Operators

2. Comparison Operators

3. Logical (or Relational) Operators

4. Assignment Operators

5. Conditional (or ternary) Operators

Sl

No

Ope

rato

r

Description Example

Let A=5, B=2

Result

1 + Addition A + B 7

2 - Subtraction A-B 3

3 * Multiplication A * B 10

4 / Division A /B 2.5

5 % Modulus

(Remainder of an

integer division)

A%B 1

6 +

+

Increment (

Increases an integer

value by one)

A++ 6

7 -

-

Decrement (

Decreases an

integer value

by one)

A - - 4

Odisha State Open University Page 11

5.6.2.1 Arithmetic Operators

JavaScript supports the following arithmetic operators: Assume variable A

holds 5 and variable B holds 2, then:

Note: Addition operator (+) works for Numeric as well as Strings. e.g. "a" + 5

will give "a5".

Example

<html>

<body>

<script type="text/javascript">

<!--

var a = 5;

var b = 2;

var c = "Test";

var linebreak = "
";

document.write("a + b = ");

result = a + b;

document.write(result);

document.write(linebreak);

document.write("a - b = ");

result = a - b;

document.write(result);

document.write(linebreak);

document.write("a / b = ");

result = a / b;

document.write(result);

document.write(linebreak);

document.write("a % b = ");

result = a % b;

document.write(result);

document.write(linebreak);

document.write("a + b + c = ");

result = a + b + c;

document.write(result);

document.write(linebreak);

a = a++;

document.write("a++ = ");

result = a++;

document.write(result);

document.write(linebreak);

b = b--;

document.write("b-- = ");

result = b--;

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and then try...</p>

Odisha State Open University Page 12

</body>

</html>

This code will produce the following results:

5.6.2.2 Comparison Operators

JavaScript supports the following comparison operators: Assume variable A

holds 10 and variable B holds 20, then:

S

l

N

o

Operator Descripti

on

Example

Let

A=

10,

B=

20

Result

1 Equal

Checks if the

values of two

operands are equal

or not, if yes, then

the condition

becomes true.

A==B False

2 != Not

Equal

Checks if the

values of two

operands are

equal or not, if

the values are not

equal, then the

condition

becomes true.

A != B True

==

Odisha State Open University Page 13

3 > Greater

than

Checks if the

value of the left

operand is greater

than the value of

the right operand,

if yes, then the

condition

becomes true.

A>B False

4 >= Greater

than or

Equal to

Checks if the

value of the left

operand is greater

than or equal to

the value of the

right operand, if

yes, then the

condition

becomes true.

A>=B False

5 < Less

than

Checks if the

value of the left

operand is less

than the value of

the right operand,

if yes, then the

condition

becomes true.

A<B True

6 <= Less

than or

Equal to

Checks if the

value of the left

operand is less

than or equal to

the value of the

right operand, if

yes, then the

condition

becomes true.

A<=B True

Odisha State Open University Page 14

Example

<html>

<body>

<script type="text/javascript">

<!--

var a = 10;

var b = 20;

var linebreak = "
";

document.write("(a == b) => ");

result = (a == b);

document.write(result);

document.write(linebreak);

document.write("(a < b) => ");

result = (a < b);

document.write(result);

document.write(linebreak);

document.write("(a > b) => ");

result = (a > b);

document.write(result);

document.write(linebreak);

document.write("(a != b) => ");

result = (a != b);

document.write(result);

document.write(linebreak);

document.write("(a >= b) => ");

result = (a >= b);

document.write(result);

document.write(linebreak);

document.write("(a <= b) => ");

result = (a <= b);

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then try...</p>

</body>

</html>

Odisha State Open University Page 15

This code will produce the following results:

5.6.2.3 Logical (or Relational) Operators

JavaScript supports the following logical operators: Assume variable A

holds 5 and variable B holds 2, then:

Sl

No

Operator Description

1 && Logical AND

If both the operands are

non-zero, then the

condition becomes true.

2 || Logical OR

If any of the two

operands are non-zero,

then the condition

becomes true.

3 ! Logical NOT

Reverses the logical

state of its operand. If a

condition is true, then

the Logical NOT

operator will make it

false.

Odisha State Open University Page 16

Example

<html>

<body>

<script type="text/javascript">

<!--

var a = true;

var b = false;

varlinebreak = "
";

document.write("(a && b) => ");

result = (a && b);

document.write(result);

document.write(linebreak);

document.write("(a || b) => ");

result = (a || b);

document.write(result);

document.write(linebreak);

document.write("!(a && b) => ");

result = (!(a && b));

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then try...</p>

</body>

</html>

This code will produce the following results:

Odisha State Open University Page 17

5.6.2.4 Assignment Operators

JavaScript supports the following assignment operators:

Sl

No

Operator Description

1 = Simple Assignment

Assigns values from the right side operand to

the left side operand

Ex: C = A + B will assign the value of A + B

into C

2 += Add and Assignment

It adds the right operand to the left operand and

assigns the result to the left operand.

Ex: C += A is equivalent to C = C + A

3 -= Subtract and Assignment

It subtracts the right operand from the left

operand and assigns the result to the left

operand.

Ex: C -= A is equivalent to C = C - A

4 *= Multiply and Assignment

It multiplies the right operand with the left

operand and assigns the result to the left

operand.

Ex: C *= A is equivalent to C = C * A

5 /= Divide and Assignment)

It divides the left operand with the right operand

and assigns the result to the left operand.

Ex: C /= A is equivalent to C = C / A

6 %= Modules and Assignment

It takes modulus using two operands and

assigns the result to the left operand.

Ex: C %= A is equivalent to C = C % A

Note: Same logic applies to Bitwise operators, so they will become <<=, >>=,

>>=, &=, |= and ^=.

Odisha State Open University Page 18

5.6.2.5 Conditional (or ternary) Operator

The conditional operator first evaluates an expression for a true or false value and

then executes one of the two given statements depending upon the result of the

evaluation.

Sl

No

Operator Description

1 ? : Conditional

If Condition is true? Then value X : Otherwise

value Y

Example

<html>

<body>

<script type="text/javascript">

<!--

var a = 10;

var b = 20;

var linebreak = "
";

document.write ("((a > b) ?100 : 200) => "); result = (a > b) ? 100 : 200;

document.write(result);

document.write(linebreak);

document.write ("((a < b) ?100 : 200) => ");

result = (a < b) ? 100 : 200;

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then try...</p>

</body>

</html>

This code will produce the following results:

Odisha State Open University Page 19

CHECK YOUR PROGRESS 2

Q1. What is Variable?

Answer:__

Q2. What is Operator?

Answer:__

5.7 IFé.ELSE

While writing a program, there may be a situation when you need to adopt one out

of a given set of paths. In such cases, you need to use conditional statements that

allow your program to make correct decisions and perform right actions.

JavaScript supports conditional statements which are used to perform different

actions based on different conditions. Here we will explain the ifé..else

statement.

5.7.1 Flow Chart of if-else

The following flow chart shows how the if-else statement works.

JavaScript supports the following forms of ifé...else statement:

1. if statement

2. if...else statement

3. if...else if... statement

Odisha State Open University Page 20

5.7.2 if Statement

The óifô statement is the fundamental control statement that allows JavaScript to

make decisions and execute statements conditionally.

Syntax

The syntax for a basic if statement is as follows:

if (expression)

{

Statement(s) to be executed if expression is true

}

Here a JavaScript expression is evaluated. If the resulting value is true, the given

statement(s) are executed. If the expression is false, then no statement would be

not executed. Most of the times, you will use comparison operators while making

decisions.

Example

The following example to understand how the if statement works.

<html>

<body>

<script type="text/javascript">

<!--

var age = 20;

if(age >=18){

document.write("Qualifies for Election Voting");}

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

This code will produce the following results:

Odisha State Open University Page 21

5.7.3 if..else Statement

The óif...elseô statement is the next form of control statement that allows

JavaScript to execute statements in a more controlled way.

Syntax

The syntax of an if-else statement is as follows:

if (expression)

{

 Statement(s) to be executed if expression is true

}

else

{

Statement(s) to be executed if expression is false

}

Here JavaScript expression is evaluated. If the resulting value is true, the given

statement(s) in the óifô block, are executed. If the expression is false, then the

given statement(s) in the else block are executed.

Example

The following code to learn how to implement an if-else statement in JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var age = 15;

if(age >= 18)

{

 document.write("Qualifies for Election Voting"); }else{

 document.write("Does not qualify for Election Voting");

}

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

This code will produce the following results:

Odisha State Open University Page 22

5.7.4 ifé.elseé.if Statement

The óif...else if...ô statement is an advanced form of iféelse that allows JavaScript

to make a correct decision out of several conditions.

Syntax

The syntax of an if-else-if statement is as follows:

if (expression 1){

 Statement(s) to be executed if expression 1 is true }

else if (expression 2){

 Statement(s) to be executed if expression 2 is true }

else if (expression 3){

 Statement(s) to be executed if expression 3 is true }

else{

 Statement(s) to be executed if no expression is true

}

There is nothing special about this code. It is just a series of if statements, where

each if is a part of the else clause of the previous statement. Statement(s) are

executed based on the true condition, if none of the conditions is true, then the

else block is executed.

Example

The following code to learn how to implement an if-else-if statement in

JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var mark = 92;

if(mark >= 90){

document.write("òResult is Excellentò"); }

else if(mark >=60){

document.write("ñResult is 1
st
 Classò"); }

else if(mark>=50){

document.write("ñResult is 2
nd

 Classò"); }

else if(mark>=40){

document.write("ñResult is 3
rd

 Classò"); }

else{

document.write("Fail");}

//-->

</script>

<p>set the variable to different value and then try...</p>

</body>

</html>

Odisha State Open University Page 23

This code will produce the following results:

5.8 Switch Case

You can use multiple if...elseéif statements, as in the previous chapter, to

perform a multi way branch. However, this is not always the best solution,

especially when all of the branches depend on the value of a single variable.

Starting with JavaScript 1.2, you can use a switch statement which handles

exactly this situation, and it does so more efficiently than repeated if...else if

statements.

5.8.1 Flow Chart

The following flow chart explains a switch-case statement works.

Odisha State Open University Page 24

5.8.2 Syntax

The objective of a switch statement is to give an expression to evaluate

and several different statements to execute based on the value of the

expression. The interpreter checks each case against the value of the

expression until a match is found. If nothing matches, a default condition

will be used.

switch (expression)

{

case condition 1: statement(s)

break;

case condition 2: statement(s)

break;

...

case condition n: statement(s)

break;

default: statement(s)

}

The break statements indicate the end of a particular case. If they were omitted,

the interpreter would continue executing each statement in each of the following

cases.

Example
The following example to implement switch-case statement.

<html>

<body>

<script type="text/javascript">

<!--

var grade='A';

document.write("Entering switch block
");

switch (grade)

{

case 'A': document.write("Good job
");

break;

case 'B': document.write("Pretty good
");

break;

case 'C': document.write("Passed
");

break;

case 'D': document.write("Not so good
");

break;

case 'F': document.write("Failed
");

break;

default: document.write("Unknown grade
")

}

document.write("Exiting switch block");

//-->

</script>

<p>Set the variable to different value and then try...</p>

Odisha State Open University Page 25

</body>

</html>

This code will produce the following results:

5.9 Loops

Iterative statements, also called loop statements, specify certain commands

to be executed repeatedly until some condition is met. The loops are often used to

iterate the values of an array (hence the name) or to work though repetitious

mathematical tasks. It is a command that execute again and again till condition

fulfill.

5.9.1 Types of loop

There are different types of loop used in java script . Some of the loop are

:

1. doé. While loop

2. while loop

3. for loop

5.9.2 Do----while loop

The do-while statement is a post-test loop, meaning that the evaluation of

the escape condition is only done after the code inside the loop has been executed.

This means that the body of the loop is always executed at least once before the

expression is evaluated.

Syntax:

Odisha State Open University Page 26

do {

statement

} while (expression);

For example:

var i = 0;

do {

i += 2;

} while (i < 10);

5.9.3 While loop

The while statement is a pretest loop. This means the evaluation of the

escape condition is done before the code inside the loop has been executed.

Because of this, it is possible that the body of the loop is never executed.

Syntax:

while(expression) statement

For example:

var i = 0; while (i < 10) {

i += 2;

}

5.9.4 For loop

The for statement is also a pretest loop with the added capabilities of variable

initialization before entering the loop and defining post loop code to be entered.

The óforô loop is the most compact form of looping. It includes the following

three important parts:

ü The loop initialization where we initialize our counter to a starting value.

The initialization statement is executed before the loop begins.

ü The test statement which will test if a given condition is true or not. If the

condition is true, then the code given inside the loop will be executed,

otherwise the control will come out of the loop.

ü The iteration statement where you can increase or decrease your counter.

Odisha State Open University Page 27

You can put all the three parts in a single line separated by semicolons.

Syntax:

 for (initialization; expression; post-loop-expression) statement

For example:

for (var i=0; i <iCount; i++){

alert(i);

}

This code defines a variable i that begins with the value 0. The for loop is entered

only if the conditional expression (i <iCount) evaluates to true, making it possible

that the body of the code might not be executed. If the body is executed, the

postloop expression is also executed, iterating the variable i.

Example

The following example to learn how a for loop works in JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var count;

document.write("Starting Loop" + "
");

for(count = 0; count < 5; count++){

document.write("Current Count : " + count);

document.write("
");

}

//-->

</script>

<p>Set the variable to different value and then try...</p>

</body>

</html>

Output

Odisha State Open University Page 28

5.10 Functions

A function is a group of reusable code which can be called anywhere in

your program. This eliminates the need of writing the same code again and again.

It helps programmers in writing modular codes. Functions allow a programmer to

divide a big program into a number of small and manageable functions.

Like any other advanced programming language, JavaScript also supports all the

features necessary to write modular code using functions. You must have seen

functions like alert() and write() in the earlier chapters. We were using these

functions again and again, but they had been written in core JavaScript only once.

JavaScript allows us to write our own functions as well. This section explains how

to write your own functions in JavaScript.

5.10.1 Function Definition

Before we use a function, we need to define it. The most common way to define a

function in JavaScript is by using the function keyword, followed by a unique

function name, a list of parameters (that might be empty), and a statement block

surrounded by curly braces.

Syntax

The basic syntax is shown here.

<script type="text/javascript">

<! --

function functionname(parameter-list) {

statements

}

//-->

</script>

Example

The following example. It defines a function called sayHello that takes no

parameters:

<script type="text/javascript">

<!--

function sayHello()

{

alert("Hello there");

}

//-->

</script>

Odisha State Open University Page 29

5.10.2 Calling a Function

To invoke a function somewhere later in the script, you would simply need to

write the name of that function as shown in the following code.

<html>

<head>

<script type="text/javascript"> function sayHello()

{

document.write ("Hello there!");

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type="button" onclick="sayHello()" value="Say Hello"> </form>

<p>Use different text in write method and then try...</p> </body>

</html>

Output

5.10.3 Function Parameters

Till now, we have seen functions without parameters. But there is a facility to pass

different parameters while calling a function. These passed parameters can be

captured inside the function and any manipulation can be done over those

parameters. A function can take multiple parameters separated by comma.

Example

The following example. We have modified our sayHello function here. Now it

takes two parameters.

Odisha State Open University Page 30

<html>

<head>

<script type="text/javascript"> function sayHello(name, age)

{

document.write (name + " is " + age + " years old.");

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type="button" onclick="sayHello('Zara', 7)" value="Say Hello">

</form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>

Output

5.10.4 The return Statement

A JavaScript function can have an optional return statement. This is required if

you want to return a value from a function. This statement should be the last

statement in a function.

For example, you can pass two numbers in a function and then you can expect the

function to return their multiplication in your calling program.

Example

Try the following example. It defines a function that takes two parameters

and concatenates them before returning the resultant in the calling

program.

Odisha State Open University Page 31

<html>

<head>

<script type="text/javascript"> function concatenate(first, last) {

var full;

 full = first + last; return full;

}

function secondFunction() {

var result;

 result = concatenate('Zara', 'Ali'); document.write (result);

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type="button" onclick="secondFunction()" value="Call Function">

</form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>

5.10.5 Nested Functions

Prior to JavaScript 1.2, function definition was allowed only in top level

global code, but JavaScript 1.2 allows function definitions to be nested within

other functions as well. Still there is a restriction that function definitions may not

appear within loops or conditionals. These restrictions on function definitions

apply only to function declarations with the function statement.

Example

The following example to learn how to implement nested functions.

<html>

<head>

<script type="text/javascript">

<!--

function hypotenuse(a, b) {

function square(x) { return x*x; }

return Math.sqrt(square(a) + square(b));

}

function secondFunction(){

var result;

result = hypotenuse(1,2);

document.write (result);

}

//-->

</script>

</head>

Odisha State Open University Page 32

<body>

<p>Click the following button to call the function</p>

<form>

<input type="button" onclick="secondFunction()" value="Call Function">

</form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>

5.11 Events and Event handling

JavaScript's interaction with HTML is handled through events that occur when the

user or the browser manipulates a page. When the page loads, it is called an

event. When the user clicks a button, that click too is an event. Other examples

include events like pressing any key, closing a window, resizing a window, etc.

Developers can use these events to execute JavaScript coded responses, which

cause buttons to close windows, messages to be displayed to users, data to be

validated, and virtually any other type of response imaginable. Events are a part

of the Document Object Model (DOM) Level 3 and every HTML element

contains a set of events which can trigger JavaScript Code.

Here we will see a few examples to understand the relation between Event and

JavaScript.

5.11.1 Onclick Event Type

This is the most frequently used event type which occurs when a user

clicks the left button of his mouse. You can put your validation, warning

etc., against this event type.

Example

<html>

<head>

<script type="text/javascript">

<!--

function sayHello() {

document.write ("Hello World")

}

//-->

</script>

</head>

<body>

<p> Click the following button and see result</p>

<input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

Odisha State Open University Page 33

Output

5.11.2 onsubmitEvent Type

onsubmit is an event that occurs when you try to submit a form. You can put your

form validation against this event type.

Example
The following example shows how to use onsubmit. Here we are calling a

validate() function before submitting a form data to the webserver. If validate()

function returns true, the form will be submitted, otherwise it will not submit the

data.

The following example.

<html>

<head>

<script type="text/javascript">

<!--

function validation() {

all validation goes here

.........

return either true or false

}

//-->

</script>

</head>

<body>

<form method="POST" action="t.cgi" onsubmit="return

validate()">

.......

<input type="submit" value="Submit" />

</form>

</body>

</html>

Odisha State Open University Page 34

5.11.3 onmouseover and onmouseout

These two event types will help you create nice effects with images or even with

text as well. The onmouseover event triggers when you bring your mouse over

any element and the onmouseout triggers when you move your mouse out from

that element. Try the following example.

<html>

<head>

<script type="text/javascript">

<!--

function over() {

document.write ("Mouse Over");

}

function out() {

document.write ("Mouse Out");

}

//-->

</script>

</head>

<body>

<p>Bring your mouse inside the division to see the result:</p>

<div onmouseover="over()" onmouseout="out()">

<h2> This is inside the division </h2>

</div>

</body>

</html>

5.11.4 HTML5 Standard Events
The standard HTML 5 events are listed here for your reference. Here script

indicates a Javascript function to be executed against that event.

Attribute Value Description

Offline script Triggers when the document

goes offline

Onabort script Triggers on an abort event

onafterprint script Triggers after the document is

printed

onbeforeonload script Triggers before the document

loads

onbeforeprint script Triggers before the document

is printed

onblur script Triggers when the window

loses focus

oncanplay script Triggers when media can start

play, but might has to stop for

buffering

oncanplaythrough script Triggers when media can be

played to the end, without

stopping for buffering

onchange script Triggers when an element

changes

onclick script Triggers on a mouse click

Odisha State Open University Page 35

oncontextmenu script Triggers when a context menu

is triggered

oncontextmenu script Triggers when a context menu

is triggered

ondblclick script Triggers on a mouse double-

click

ondrag script Triggers when an element is

dragged

ondragend script Triggers at the end of a drag

operation

ondragenter script Triggers when an element has

been dragged to a valid drop

target

ondragleave script Triggers when an element

leaves a valid drop target

ondragover script Triggers when an element is

being dragged over a valid

drop target

ondragstart script Triggers at the start of a drag

operation

ondrop script Triggers when dragged

element is being dropped

ondurationchange script Triggers when the length of

the media is changed

onemptied script Triggers when a media

resource element suddenly

becomes empty.

onended script Triggers when media has

reach the end

onerror script Triggers when an error occur

onfocus script Triggers when the window

gets focus

onformchange script Triggers when a form changes

onforminput script Triggers when a form gets

user input

onhaschange script Triggers when the document

has changed

oninput script Triggers when an element

gets user input

oninvalid script Triggers when an element is

invalid

onkeydown script Triggers when a key is

pressed

onkeypress script Triggers when a key is

pressed and released

onkeyup script Triggers when a key is

released

Odisha State Open University Page 36

onload script Triggers when the document

loads

onloadeddata script Triggers when media data is

loaded

onloadedmetadata script Triggers when the duration

and other media data of a

media element is loaded

onloadstart script Triggers when the browser

starts to load the media data

onmessage script Triggers when the message is

triggered

onmousedown script Triggers when a mouse button

is pressed

onmousemove script Triggers when the mouse

pointer moves

onmouseout script Triggers when the mouse

pointer moves out of an

element

onmouseover script Triggers when the mouse

pointer moves over an

element

onmouseup script Triggers when a mouse button

is released

onmousewheel script Triggers when the mouse

wheel is being rotated

onoffline script Triggers when the document

goes offline

onoine script Triggers when the document

comes online

ononline script Triggers when the document

comes online

onpagehide script Triggers when the window is

hidden

onpageshow script Triggers when the window

becomes visible

onpause script Triggers when media data is

paused

onplay script Triggers when media data is

going to start playing

5.12 Cookies

Web Browsers and Servers use HTTP protocol to communicate and HTTP

is a stateless protocol. But for a commercial website, it is required to maintain

session information among different pages. For example, one user registration

ends after completing many pages. But how to maintain users' session information

across all the web pages.

Odisha State Open University Page 37

In many situations, using cookies is the most efficient method of remembering

and tracking preferences, purchases, commissions, and other information required

for better visitor experience or site statistics.

5.12.1 How It Works?

Your server sends some data to the visitor's browser in the form of a cookie. The

browser may accept the cookie. If it does, it is stored as a plain text record on the

visitor's hard drive. Now, when the visitor arrives at another page on your site, the

browser sends the same cookie to the server for retrieval. Once retrieved, your

server knows/remembers what was stored earlier.

Cookies are a plain text data record of 5 variable-length fields:

ü Expires: The date the cookie will expire. If this is blank, the cookie will

expire when the visitor quits the browser.

ü Domain: The domain name of your site.

ü Path: The path to the directory or web page that set the cookie. This may

be blank if you want to retrieve the cookie from any directory or page.

ü Secure: If this field contains the word "secure", then the cookie may only

be retrieved with a secure server. If this field is blank, no such restriction

exists.

ü Name=Value: Cookies are set and retrieved in the form of key-value

pairs.

Cookies were originally designed for CGI programming. The data contained in a

cookie is automatically transmitted between the web browser and the web server,

so CGI scripts on the server can read and write cookie values that are stored on

the client.

JavaScript can also manipulate cookies using the cookie property of the

Document object. JavaScript can read, create, modify, and delete the cookies that

apply to the current web page.

5.12.2 Storing Cookies

The simplest way to create a cookie is to assign a string value to the

document.cookie object, which looks like this.

document.cookie = "key1=value1;key2=value2;expires=date";

Here the expires attribute is optional. If you provide this attribute with a valid

date or time, then the cookie will expire on a given date or time and thereafter, the

cookies' value will not be accessible.

Note: Cookie values may not include semicolons, commas, or whitespace. For

this reason, you may want to use the JavaScript escape() function to encode the

value before storing it in the cookie. If you do this, you will also have to use the

corresponding unescape() function when you read the cookie value.

Odisha State Open University Page 38

Example

The following. It sets a customer name in an input cookie.

<html>

<head>

<script type="text/javascript">

<!--

function WriteCookie()

{

if(document.myform.customer.value == ""){

alert ("Enter some value!");

return;

}

cookievalue= escape(document.myform.customer.value) + ";";

document.cookie="name=" + cookievalue;

document.write ("Setting Cookies : " + "name=" + cookievalue);

}

//-->

</script>

</head>

<body>

<form name="myform" action="">

Enter name: <input type="text" name="customer"/>

<input type="button" value="Set Cookie" onclick="WriteCookie();"/>

</form>

</body>

</html>

Output

Odisha State Open University Page 39

Now your machine has a cookie called name. You can set multiple cookies using

multiple key=value pairs separated by comma.

5.12.3 Reading Cookies

Reading a cookie is just as simple as writing one, because the value of the

document.cookie object is the cookie. So you can use this string whenever you

want to access the cookie. The document.cookie string will keep a list of

name=value pairs separated by semicolons, where name is the name of a cookie

and value is its string value.

You can use strings' split() function to break a string into key and values as

follows:

Example

The following example to get all the cookies.

<html>

<head>

<script type="text/javascript">

<!--

function ReadCookie()

{

var allcookies = document.cookie;

document.write ("All Cookies : " + allcookies);

// Get all the cookies pairs in an array

cookiearray = allcookies.split(';');

// Now take key value pair out of this array

for(var i=0; i<cookiearray.length; i++){

name = cookiearray[i].split('=')[0];

value = cookiearray[i].split('=')[1];

document.write ("Key is : " + name + " and Value is : " + value);

}

}

//-->

</script>

</head>

<body>

<form name="myform" action="">

<p> click the following button and see the result:</p>

<input type="button" value="Get Cookie" onclick="ReadCookie()"/>

</form>

</body>

</html>

Note: Here length is a method of Array class which returns the length of an

array. We will discuss Arrays in a separate chapter. By that time, please try to

digest it.

Odisha State Open University Page 40

Note: There may be some other cookies already set on your machine. The above

code will display all the cookies set on your machine.

5.12.4 Setting Cookies Expiry Date

You can extend the life of a cookie beyond the current browser session by setting

an expiration date and saving the expiry date within the cookie. This can be done

by setting the óexpiresô attribute to a date and time.

Example

The following example. It illustrates how to extend the expiry date of a cookie by

1 Month.

<html>

<head>

<script type="text/javascript">

<!--

function WriteCookie()

{

var now = new Date();

now.setMonth(now.getMonth() + 1);

cookievalue = escape(document.myform.customer.value) + ";"

document.cookie="name=" + cookievalue;

document.cookie = "expires=" + now.toUTCString() + ";"

document.write ("Setting Cookies : " + "name=" + cookievalue);

}

//-->

</script>

</head>

<body>

<form name="formname" action="">

Enter name: <input type="text" name="customer"/>

<input type="button" value="Set Cookie" onclick="WriteCookie()"/>

</form>

</body>

</html>

5.12.5 Deleting Cookies

Sometimes you will want to delete a cookie so that subsequent attempts to read

the cookie return nothing. To do this, you just need to set the expiry date to a time

in the past.

Example

The following example. It illustrates how to delete a cookie by setting its expiry

date to one month behind the current date.

<html>

<head>

<script type="text/javascript">

<!--

Odisha State Open University Page 41

function WriteCookie()

{

var now = new Date();

now.setMonth(now.getMonth() - 1);

cookievalue = escape(document.myform.customer.value) + ";"

document.cookie="name=" + cookievalue;

document.cookie = "expires=" + now.toUTCString() + ";"

document.write("Setting Cookies : " + "name=" + cookievalue);

}

//-->

</script>

</head>

<body>

<form name="formname" action="">

Enter name: <input type="text" name="customer"/>

<input type="button" value="Set Cookie" onclick="WriteCookie()"/>

</form>

</body>

</html>

5.13 Page Redirection

You might have encountered a situation where you clicked a URL to reach a page

X but internally you were directed to another page Y. It happens due to page

redirection. This concept is different from JavaScript Page Refresh.

There could be various reasons why you would like to redirect a user from the

original page. We are listing down a few of the reasons:

ü You did not like the name of your domain and you are moving to a new

one. In such a scenario, you may want to direct all your visitors to the new

site. Here you can maintain your old domain but put a single page with a

page redirection such that all your old domain visitors can come to your

new domain.

ü You have built-up various pages based on browser versions or their names

or may be based on different countries, then instead of using your server-

side page redirection, you can use client-side page redirection to land your

users on the appropriate page.

ü The Search Engines may have already indexed your pages. But while

moving to another domain, you would not like to lose your visitors coming

through search engines. So you can use client-side page redirection. But

keep in mind this should not be done to fool the search engine, it could

lead your site to get banned.

5.13.1 JavaScript Page Refresh

You can refresh a web page using JavaScript location.reload method. This code

can be called automatically upon an event or simply when the user clicks on a

link. If you want to refresh a web page using a mouse click, then you can use the

following code:

Refresh Page

Odisha State Open University Page 42

5.13.2 Auto Refresh

You can also use JavaScript to refresh the page automatically after a given time

period. Here setTimeout() is a built-in JavaScript function which can be used to

execute another function after a given time interval.

Example

The following example. It shows how to refresh a page after every 5 seconds. You

can change this time as per your requirement.

<html>

<head>

<script type="text/JavaScript">

<!--

function AutoRefresh(t) {

setTimeout("location.reload(true);", t);

}

// -->

</script>

</head>

<body onload="JavaScript:AutoRefresh(5000);">

<p>This page will refresh every 5 seconds.</p>

</body>

</html>

5.13.3 How Page Re-direction Works?

The implementations of Page-Redirection are as follows.

Example 1

It is quite simple to do a page redirect using JavaScript at client side. To redirect

your site visitors to a new page, you just need to add a line in your head section as

follows.

<html>

<head>

<script type="text/javascript">

<!--

function Redirect() {

window.location="http://www.tutorialspoint.com";

}

//-->

</script>

</head>

<body>

<p>Click the following button, you will be redirected to home

page.</p>

<form>

<input type="button" value="Redirect Me" onclick="Redirect();"

/>

</form>

</body>

</html>

Odisha State Open University Page 43

Example 2

You can show an appropriate message to your site visitors before redirecting them

to a new page. This would need a bit time delay to load a new page. The following

example shows how to implement the same. Here setTimeout() is a built-in

JavaScript function which can be used to execute another function after a given

time interval.

<html>

<head>

<script type="text/javascript">

<!--

function Redirect() {

window.location="http://www.tutorialspoint.com";

}

document.write ("You will be redirected to our main page in 10

seconds!");

setTimeout('Redirect()', 10000);

//-->

</script>

</head>

<body>

</body>

</html>

Example 3
The following example shows how to redirect your site visitors onto a different

page based on their browsers.

<html>

<head>

<script type="text/javascript">

<!--

var browsername=navigator.appName;

if(browsername == "Netscape")

{

window.location="http://www.location.com/ns.htm";

}

else if (browsername =="Microsoft Internet Explorer")

{

window.location="http://www.location.com/ie.htm";

}

else

{

window.location="http://www.location.com/other.htm";

}

//-->

</script>

</head>

<body> </body></html>

Odisha State Open University Page 44

5.14 Dialogs

JavaScript supports three important types of dialog boxes. These dialog boxes can

be used to raise and alert, or to get confirmation on any input or to have a kind of

input from the users. Here we will discuss each dialog box one by one.

5.14.1 Alert Dialog Box

An alert dialog box is mostly used to give a warning message to the users. For

example, if one input field requires to enter some text but the user does not

provide any input, then as a part of validation, you can use an alert box to give a

warning message.

Nonetheless, an alert box can still be used for friendlier messages. Alert box gives

only one button "OK" to select and proceed.

Example

<html>

<head>

<script type="text/javascript">

<!--

function Warn() {

alert ("This is a warning message!");

document.write ("This is a warning message!");

}

//-->

</script>

</head>

<body>

<p>Click the following button to see the result: </p>

<form>

<input type="button" value="Click Me" onclick="Warn();" />

</form>

</body>

</html>

Output

Odisha State Open University Page 45

5.14.2 Confirmation Dialog Box

A confirmation dialog box is mostly used to take user's consent on any option. It

displays a dialog box with two buttons: OK and Cancel.

If the user clicks on the OK button, the window method confirm() will return

true. If the user clicks on the Cancel button, then confirm() returns false. You can

use a confirmation dialog box as follows.

Example

<html>

<head>

<script type="text/javascript">

<!--

function getConfirmation(){

var retVal = confirm("Do you want to continue ?");

if(retVal == true){

document.write ("User wants to continue!");

return true;

}else{

Document.write ("User does not want to continue!");

return false;

}

}

//-->

</script>

</head>

<body>

<p>Click the following button to see the result: </p>

<form>

<input type="button" value="Click Me" onclick="getConfirmation();" />

</form>

</body>

</html>

Output

Odisha State Open University Page 46

5.14.3 Prompt Dialog Box

The prompt dialog box is very useful when you want to pop-up a text box to get

user input. Thus, it enables you to interact with the user. The user needs to fill in

the field and then click OK. This dialog box is displayed using a method called

prompt() which takes two parameters: (i) a label which you want to display in the

text box and (ii) a default string to display in the text box. This dialog box has

two buttons: OK and Cancel. If the user clicks the OK button, the window

method prompt() will return the entered value from the text box. If the user clicks

the Cancel button, the window method prompt() returns null .

Example

The following example shows how to use a prompt dialog box:

<html>

<head>

<script type="text/javascript">

<!--

function getValue(){

var retVal = prompt("Enter your name : ", "your name here");

document.write("You have entered : " + retVal);

}

//-->

</script>

</head>

<body>

<p>Click the following button to see the result: </p>

<form>

<input type="button" value="Click Me" onclick="getValue();" />

</form>

</body>

</html>

Output

Odisha State Open University Page 47

5.15 Void Keyword

Void is an important keyword in JavaScript which can be used as a unary operator

that appears before its single operand, which may be of any type. This operator

specifies an expression to be evaluated without returning a value.

Syntax
The syntax of void can be either of the following two:

<head>

<script type="text/javascript">

<!--

void func()

javascript:void func()

OR

void(func())

javascript:void(func())

//-->

</script>

</head>

Example 1
The most common use of this operator is in a client-side javascript: URL, where it

allows you to evaluate an expression for its side-effects without the browser

displaying the value of the evaluated expression. Here the expression alert

('Warning!!!') is evaluated but it is not loaded back into the current document:

<html>

<head>

<script type="text/javascript">

<!--

//-->

</script>

</head>

<body>

<p>Click the following, This won't react at all...</p>

Click me!

</body>

</html>

Example 2
Take a look at the following example. The following link does nothing because

the expression "0" has no effect in JavaScript. Here the expression "0" is

evaluated, but it is not loaded back into the current document.

<html>

<head>

<script type="text/javascript">

<!--

//-->

</script>

</head>

<body>

<p>Click the following, This won't react at all...</p>

Click me!

</body> </html>

Odisha State Open University Page 48

5.16 Printing WebPages using Java Script

Many times you would like to place a button on your webpage to print the content

of that web page via an actual printer. JavaScript helps you to implement this

functionality using the print function of window object. The JavaScript print

function window.print() prints the current web page when executed. You can call

this function directly using the onclick event as shown in the following example.

Let us create a file named my_test.html

Example

The following example.

<!DOCTYPE html>

<html>

<body>

<p> hello how are you?

How is your health?

when shall you be meeting me?

</p>

<button id ='togglee' onclick="myFunction()">Print this page</button>

<script>

function myFunction() {

 var hidden = false;

 hidden = !hidden;

 if(hidden) {

 document.getElementById('togglee').style.visibility = 'hidden';

 window.print();

 window.location="my_test.html";

 } else {

 document.getElementById('togglee').style.visibility = 'visible';

 }

}

</script>

</body>

</html>

Odisha State Open University Page 49

Output

Step-1

Step-2

Upon clicking the print button.

Odisha State Open University Page 50

When we click the print button the page is printed.

Step-3

CHECK YOUR PROGRESS 3

Q1. What is a Loop ?

Answer:__

Q2. What is a Function?

Answer:___

__

Q3. What is Cookies?

Answer:__

Q4. What is auto refresh?

Answer:__

Q5. Which function is used to print the current webpage?

Answer:__

5.17 Let us sum up

We have understood what is Javascript, its role and advantages. We came

to know how to use JavaScript in web applictions. We learn about

variables, operators, if else statements, switch case, loops, functions,

events and event handling, cookies, Page redirecton, managing dialog boxes,void

keyword, printing webpage using JavaScript

Odisha State Open University Page 51

5.18 Reference

1. Java script Bible Gold Edition

2. www. Google.com

3.www. tutorialpoints.com

4. Wrox: Professional Java Script

5. Java wiley Java script Bible

5.19 Check your progress ï possible answers

 Answers to check your progress 1

Q1. What is Java Script?

Answer: Java Script is a dynamic scripting computer programming language used

to make web pages interactive in HTML pages.

Q2 Who developed java script?

Answer: JavaScript was developed by Brendan Eich in 1995 at Netscape

Corporation

Q3. What can java script do?

Answer:

ü JavaScript can dynamically modify an HTML page.

ü JavaScript can react to user input.

ü JavaScript can validate user input.

ü JavaScript can be used to create cookies

ü JavaScript is a full-featured programming language

ü JavaScript user interaction does not require any communication

with the server

Q4. Write the syntax of java script ?

Answer:

A simple syntax of your JavaScript will appear as follows.

<Script ...>

 JavaScript code

</script>

Or

<script language="javascript" type="text/javascript">

Odisha State Open University Page 52

 JavaScript code

</script>

Q5. Write the steps to turn on or turn off JavaScript in Internet Explorer.

Answer:

Here are the steps to turn on or turn off JavaScript in Internet Explorer:

1. Follow Tools ĄInternetOptions from the menu.

2. Select Security tab from the dialog box.

3. Click the Custom Level button.

4. Scroll down till you find the Scripting option.

5. Select Enable radio button under Active scripting.

6. Finally click OK and come out.

Answers to check your progress 2

Q1. What is a Variable?

Answer: It is a quantity whose value can be changed during the execution of the

program. It can be declare using var keyword.

Q2. What is an Operator?

Answer : An Operator is a symbol that tells to perform specific operation.

Let us take a simple expression 5 + 3 is equal to 8. Here 5 and 3 are called

operands and ó+ô is called the operator.

Answers to check your progress 3

Q1. What is a Loop ?

Answer:

Iterative statements, also called loop statements, specify certain commands

to be executed repeatedly until some condition is met. Or A statement that execute

again and again till condition fulfill.

Q2. What is a Function?

Answer:

A function is a group of reusable code which can be called anywhere in

your program. This eliminates the need of writing the same code again and again.

It helps programmers in writing modular codes. Functions allow a programmer to

divide a big program into a number of small and manageable functions.

Odisha State Open University Page 53

Q3. What is Cookies?

Answer:

Cookies are small files which are stored on a user's computer. They are

designed to hold a modest amount of data specific to a particular client and

website, and can be accessed either by the web server or the client computer. This

allows the server to deliver a page tailored to a particular user, or the page itself

can contain some script which is aware of the data in the cookie and so is able to

carry information from one visit to the website (or related site) to the next.

Q4. What is auto refresh?

Answer:

Auto Refresh is a simple extension that refreshes a page automatically on a

given interval. There are many extensions to do this but this one is the most

straight forward, and easiest to use while still allowing for customization!

Q5. Which function is used to print the current webpage?

Answer:

The JavaScript print function window.print() prints the current web page when

executed.

Odisha State Open University Page 54

Unit -6

Advanced Java Script

Learning objectives:

After the Completion of this unit you should be able to know

@ In JavaScript, almost "everything" is an object.

@ About object , properties and method

@ The features of object oriented programming

@ Mathematical functions

@ String and Boolean methods

@ Error and exception handling

@ Animation, plug-ins

@ Different shapes of image map

Structure

6.1 Working With Objects

6.1.1 Object properties

6.1.2 Object method

6.1.3 User defined Objects

6.1.4 The NEW operator

6.1.5 The Object () Constructor

6.1.6 Defining Methods for an Object

6.1.7 The ówithô Keyword

6.2 Working With Numbers

6.2.1 Number Properties

6.2.1.1Max_Value

6.2.1.2 Min_Value

6.2.1.3 NaN

6.2.1.4 Negative Infinity

6.2.1.5 Positive Infinity

6.2.1.6 Prototype

6.2.1.7 Constructor

 6.2.2 Number Methods

 6.2.2.1 toExponential()

 6.2.2.2 toFixed()

 6.2.2.3 toLocaleString()

 6.2.2.4 toPrecision()

 6.2.2.5 toString()

6.3 Working With Boolean

6.3.1 Boolean Properties

6.3.2 Constructor ()

6.3.3 Boolean Methods

6.3.4 toSource()

Odisha State Open University Page 55

6.3.5 valueOf()

6.4 Working With Strings

6.4.1 String Properties

6.4.2 Length

6.4.3String Method

6.4.4 toLocalUpperCases

6.5 Arrays And Array Management

6.5.1 Array Properties

6.5.2 Constructor

6.5.3Array Methods

6.5.4 Concat ()

6.6 Working with Date

6.6.1 Date Properties

6.6.2 Constructor

6.6.3Date Method

6.6.4 Date ()

6.7 Doing Mathematical operations

6.7.1 Math Properties

6.7.2 Math-E

6.7.3 Math Methods

6.7.4 sqrt()

6.8 Working With Regular Expressions

6.8.1 RegExp Properties

6.8.2 Multiline

6.8.3RegExp Method

6.8.4 Test()

6.9 Document Object Model

6.9.1 The Legacy DOM

6.9.2 Documents method in Legacy DOM

6.10 Errors and Error Handling

6.11 Client Side Validation

6.11.1Basic Form Validation

6.11.2 Data format Validation

6.12 Animations in WebPages

6.12.1 Manual Animation

6.12.2 Automated Animation

6.13 Multimedia in WebPages

6.13.1 Checking for Plug-Ins

6.13.2 Controlling Multimedia

6.14 Image Map

6.15 Introduction to XML

6.16 Reference

6.17 Let us sum up

6.18 Check your progress ï possible answers

Odisha State Open University Page 56

6.1 Working with objects

JavaScript is an Object Oriented Programming (OOP) language. A

programming language can be called object-oriented if it provides four

basic capabilities to developers:

ü Encapsulation: the capability to store related information, whether data or

methods, together in an object.

ü Aggregation: the capability to store one object inside another object.

ü Inheritance: the capability of a class to rely upon another class (or

number of classes) for some of its properties and methods.

ü Polymorphism: the capability to write one function or method that works

in a variety of different ways.

Objects are composed of attributes. If an attribute contains a function, it is

considered to be a method of the object; otherwise the attribute is considered a

property.

6.1.1 Object Properties

Object properties can be any of the three primitive data types, or any of the

abstract data types, such as another object. Object properties are usually

variables that are used internally in the object's methods, but can also be

globally visible variables that are used throughout the page. The syntax

for adding a property to an object is:

objectName.objectProperty = propertyValue;

Example:

The following code gets the document title using the "title " property of the

document object.

var str = document.title;

6.1.2 Object Methods

Methods are the functions that let the object do something or let something

be done to it. There is a small difference between a function and a method

ï at a function is a standalone unit of statements and a method is attached

to an object and can be referenced by the this keyword. Methods are

useful for everything from displaying the contents of the object to the

screen to performing complex mathematical operations on a group of local

properties and parameters.

Example:

Following is a simple example to show how to use the write() method of

document object to write any content on the document.

Odisha State Open University Page 57

document. write ("This is test");

6.1.3 User-Defined Objects

All user-defined objects and built-in objects are descendants of an object

called Object.

6.1.4 The new Operator
The new operator is used to create an instance of an object. To create an

object, the new operator is followed by the constructor method. In the

following example, the constructor methods are Object(), Array(), and

Date(). These constructors are built-in JavaScript functions.

var employee = new Object();

var books = new Array("C++", "Perl", "Java");

var day = new Date("August 15, 1947");

6.1.5 The Object () Constructor
A constructor is a function that creates and initializes an object. JavaScript

provides a special constructor function called Object() to build the object.

The return value of the Object() constructor is assigned to a variable. The

variable contains a reference to the new object. The properties assigned to

the object are not variables and are not defined with the var keyword.

Example 1
The following example; it demonstrates how to create an Object.

<html>

<head>

<title>User-defined objects</title>

<script type="text/javascript">

var book = new Object(); // Create the object

book.subject = "Java Script"; // Assign properties to the object

book.author = "Dhruba & Sushanta";

</script>

</head>

<body>

<script type="text/javascript">

document.write("Book name is : " + book.subject + "
");

document.write("Book author is : " + book.author + "
");

</script>

</body>

</html>

Output

Odisha State Open University Page 58

Example 2

This example demonstrates how to create an object with a User-Defined

Function. Here this keyword is used to refer to the object that has been

passed to a function.

<html>

<head>

<title>User-defined objects</title>

<script type="text/javascript">

function book(title, author){

this.title = title;

this.author = author;

}

</script>

</head>

<body>

<script type="text/javascript">

var myBook = new book("Java Script", " Dhruba & Sushanta");

document.write("Book title is : " + myBook.title + "
");

document.write("Book author is : " + myBook.author + "
");

</script>

</body>

</html>

6.1.6 Defining Methods for an Object

The previous examples demonstrate how the constructor creates the object

and assigns properties. But we need to complete the definition of an object

by assigning methods to it.

Example

The following example; it shows how to add a function along with an

object.

<html>

<head>

<title>User-defined objects</title>

<script type="text/javascript">

// Define a function which will work as a method

function addPrice(amount){

this.price = amount;

}

function book(title, author){

this.title = title;

this.author = author;

this.addPrice = addPrice; // Assign that method as property.

}

</script>

</head>

<body>

Odisha State Open University Page 59

<script type="text/javascript">

var myBook = new book("Java Script", "Dhruba & Sushanta");

myBook.addPrice(100);

document.write("Book title is : " + myBook.title + "
");

document.write("Book author is : " + myBook.author + "
");

document.write("Book price is : " + myBook.price + "
");

</script>

</body>

</html>

6.1.7 TheówithôKeyword

The ówithô keyword is used as a kind of shorthand for referencing an object's

properties or methods. The object specified as an argument to with becomes the

default object for the duration of the block that follows. The properties and

methods for the object can be used without naming the object.

Syntax
The syntax for with object is as follows:

with (object)

{

properties used without the object name and dot

}

Example
The following example.

<html>

<head>

<title>User-defined objects</title>

<script type="text/javascript">

// Define a function which will work as a method

function addPrice(amount){

with(this){

price = amount;

}

}

function book(title, author){

this.title = title;

Odisha State Open University Page 60

this.author = author;

this.price = 0;

this.addPrice = addPrice; // Assign that method as property.

}

</script>

</head>

<body>

<script type="text/javascript">

var myBook = new book("Perl", "Mohtashim");

myBook.addPrice(100);

document.write("Book title is : " + myBook.title + "
");

document.write("Book author is : " + myBook.author + "
");

document.write("Book price is : " + myBook.price + "
");

</script>

</body>

</html>

 6.2 Working with numbers

The Number object represents numerical date, either integers or floating-

point numbers. In general, you do not need to worry about Number

objects because the browser automatically converts number literals to

instances of the number class.

Syntax

The syntax for creating a number object is as follows:

var val = new Number(number);

In the place of number, if you provide any non-number argument, then the

argument cannot be converted into a number, it returns NaN (Not-a-

Number).

6.2.1 Number Properties

Here is a list of each property and their description.

Property Description

MAX_VALUE The largest possible value a number in

JavaScript can have

1.7976931348623157E+308

MIN_VALUE The smallest possible value a number in

JavaScript can have 5E-324

NaN Equal to a value that is not a number.

NEGATIVE_INFINITY A value that is less than MIN_VALUE.

POSITIVE_INFINITY A value that is greater than MAX_VALUE

prototype A static property of the Number object. Use

the prototype property to assign new properties

and methods to the Number object in the

current document

constructor Returns the function that created this object's

instance. By default this is the Number object.

Odisha State Open University Page 61

6.2.1.1 MAX_VALUE

The Number.MAX_VALUE property belongs to the static Number

object. It represents constants for the largest possible positive numbers that

JavaScript can work with. The actual value of this constant is

1.7976931348623157 x 10308.

Syntax
The syntax to use MAX_VALUE is:

var val = Number.MAX_VALUE;

Example:

The following example to learn how to use MAX_VALUE.

<html>

<head>

<script type="text/javascript">

<!--

function showValue()

{

var val = Number.MAX_VALUE;

document.write ("Value of Number.MAX_VALUE : " + val);

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<input type="button" value="Click Me" onclick="showValue();"

/>

</form>

</body>

</html>

Output

Odisha State Open University Page 62

6.2.1.2 MIN_VALUE

The Number.MIN_VALUE property belongs to the static Number

object. It represents constants for the smallest possible positive numbers that

JavaScript can work with.

The actual value of this constant is 5 x 10
-324

.

Syntax

The syntax to use MIN_VALUE is:

var val = Number.MIN_VALUE;

6.2.1.3 NaN

Unquoted literal constant NaN is a special value representing Not-a-

Number. Since NaN always compares unequal to any number, including NaN, it

is usually used to indicate an error condition for a function that should return a

valid number.

Note: Use the isNaN() global function to see if a value is an NaN value.

Syntax
The syntax to use NaN is:

var val = Number.NaN;

6.2.1.4 NEGATIVE_INFINITY

This is a special numeric value representing a value less than

Number.MIN_VALUE. This value is represented as "-Infinity". It resembles an

infinity in its mathematical behavior. For example, anything multiplied by

NEGATIVE_INFINITY is NEGATIVE_INFINITY, and anything divided by

NEGATIVE_INFINITY is zero. Because NEGATIVE_INFINITY is a constant,

it is a read-only property of Number.

Syntax
The syntax to use NEGATIVE_INFINITY is as follows:

 var val = Number. NEGATIVE_INFINITY;

6.2.1.5 POSITIVE_INFINITY

This is a special numeric value representing any value greater than

Number.MAX_VALUE. This value is represented as "Infinity". It resembles an

infinity in its mathematical behavior. For example, anything multiplied by

POSITIVE_INFINITY is POSITIVE_INFINITY, and anything divided by

POSITIVE_INFINITY is zero. As POSITIVE_INFINITY is a constant, it is a

read-only property of Number.

Syntax
Use the following syntax to use POSITIVE_INFINITY.

var val = Number. POSITIVE_INFINITY;

Odisha State Open University Page 63

6.2.1.6 Prototype

The prototype property allows you to add properties and methods to any object

(Number, Boolean, String and Date etc.).

Note: Prototype is a global property which is available with almost all the objects.

Syntax
Use the following syntax to use Prototype.

object.prototype.name = value

6.1.2.7 Constructor

It returns a reference to the Number function that created the instance's

prototype.

Syntax
Its syntax is as follows:

number. Constructor ()

Return value
Returns the function that created this object's instance.

6.2.2 Number Methods

The Number object contains only the default methods that are a part of

every object's definition.

Method Description

toExponential() Forces a number to display in exponential

notation, even if the number is in the range

in which JavaScript normally uses standard

notation.

toFixed()

Formats a number with a specific number of

digits to the right of the decimal.

toLocaleString()

Returns a string value version of the current

number in a format that may vary according

to a browser's local settings.

toPrecision()

Defines how many total digits (including

digits to the left and right of the decimal) to

display of a number.

toString()

Returns the string representation of the

number's value.

valueOf()

Returns the number's value.

Odisha State Open University Page 64

6.2.2.1 to Exponential ()

This method returns a string representing the number object in exponential

notation.

Syntax
Its syntax is as follows:

number.toExponential([fractionDigits])

Parameter Details
fractionDigits: An integer specifying the number of digits after the decimal point.

Defaults to as many digits as necessary to specify the number.

Return Value
A string representing a Number object in exponential notation with one digit

before the decimal point, rounded to fractionDigits digits after the decimal point.

If the fractionDigits argument is omitted, the number of digits after the decimal

point defaults to the number of digits necessary to represent the value uniquely.

Example

The following example.

<html>

<head>

<title>Javascript Method toExponential()</title>

</head>

<body>

<script type="text/javascript">

var num=77.1234;

var val = num.toExponential();

document.write("num.toExponential() is : " + val);

document.write("
");

val = num.toExponential(4);

document.write("num.toExponential(4) is : " + val);

document.write("
");

val = num.toExponential(2);

document.write("num.toExponential(2) is : " + val);

document.write("
");

val = 77.1234.toExponential();

document.write("77.1234.toExponential()is : " + val);

document.write("
");

val = 77.1234.toExponential();

document.write("77 .toExponential() is : " + val);

</script>

</body>

</html>

Odisha State Open University Page 65

6.2.2.2 to Fixed ()

This method formats a number with a specific number of digits to the right of the

decimal.

Syntax
Its syntax is as follows:

number.toFixed([digits])

Parameter Details
digits: The number of digits to appear after the decimal point.

Return Value
A string representation of number that does not use exponential notation

and has the exact number of digits after the decimal place.

6.2.2.3 toLocaleString ()

This method converts a number object into a human readable string representing

the number using the locale of the environment.

Syntax
Its syntax is as follows:

number.toLocaleString()

Return Value
Returns a human readable string representing the number using the locale of the

environment.

6.2.2.4 toPrecision ()
This method returns a string representing the number object to the specified

precision.

Syntax
Its syntax is as follows:

number.toPrecision([precision])

Parameter Details
precision: An integer specifying the number of significant digits.

Return Value
Returns a string representing a Number object in fixed-point or exponential

notation rounded toprecision significant digits.

Odisha State Open University Page 66

6.2.2.5 toString ()
This method returns a string representing the specified object. The toString()

method parses its first argument, and attempts to return a string representation in

the specified radix (base).

Syntax
Its syntax is as follows:

number.toString([radix])

Parameter Details
radix: An integer between 2 and 36 specifying the base to use for representing

numeric values.

Return Value
Returns a string representing the specified Number object.

6.3 Working with Boolean

The Boolean object represents two values, either "true" or "false". If value

parameter is omitted or is 0, -0, null, false, NaN, undefined, or the empty string

(""), the object has an initial value of false.

Syntax

Use the following syntax to create a boolean object.

var val = new Boolean(value);

6.3.1 Boolean Properties

Here is a list of the properties of Boolean object:

Property Description

constructor Returns a reference to

the Boolean function

that created the

object.

prototype The prototype

property allows you

to add properties and

methods to an object.

6.3.2 constructor ()
Javascript boolean constructor() method returns a reference to the

Boolean function that created the instance's prototype.

Syntax

Use the following syntax to create a Boolean constructor() method.

boolean.constructor()

Return Value

Returns the function that created this object's instance.

Odisha State Open University Page 67

Example

<html>

<head>

<title>JavaScript constructor() Method</title>

</head>

<body>

<script type="text/javascript">

var bool = new Boolean();

document.write("bool.constructor() is : " + bool.constructor);

</script>

</body>

</html>

Output

6.3.3 Boolean Methods

Here is a list of the methods of Boolean object and their description.

Method Description

toSource() Returns a string containing the source of the Boolean

object; you can use this string to create an equivalent

object.

toString() Returns a string of either "true" or "false" depending

upon the value of the object.

valueOf() Returns the primitive value of the Boolean object.

6.3.4 toSource ()

Javascript boolean toSource() method returns a string representing the source

code of the object.

Note: This method is not compatible with all the browsers.

Syntax
Its syntax is as follows:

boolean.toSource()

Return Value

Returns a string representing the source code of the object.

Odisha State Open University Page 68

Example

<html>

<head>

<title>JavaScript toSource() Method</title>

</head>

<body>

<script type="text/javascript">

function book(title, publisher, price)

{

this.title = title;

this.publisher = publisher;

this.price = price;

}

var newBook = new book("Java Script","OSOU Inc",200);

document.write("newBook.toSource() is : "+ newBook.toSource());

</script>

</body>

</html>

6.3.5 valueOf ()
Javascript boolean valueOf() method returns the primitive value of the specified

boolean object.

Syntax
Its syntax is as follows:

boolean.valueOf()

Return Value

Returns the primitive value of the specified boolean object.

Example

The following example.

<html>

<head>

<title>JavaScript toString() Method</title>

</head>

<body>

<script type="text/javascript">

var flag = new Boolean(false);

document.write("flag.valueOf is : " + flag.valueOf());

</script>

</body>

</html>

6.4 Working with Strings

The String object lets you work with a series of characters; it wraps Javascript's

string primitive data type with a number of helper methods.

As JavaScript automatically converts between string primitives and String objects,

you can call any of the helper methods of the String object on a string primitive.

Odisha State Open University Page 69

Syntax
Use the following syntax to create a String object:

var val = new String(string);

The string parameter is a series of characters that has been properly encoded.

6.4.1 String Properties

Here is a list of the properties of String object and their description.

Property Description

constructor Returns a reference to the String function that created the

object.

length Returns the length of the string.

prototype The prototype property allows you to add properties and

methods to an object.

6.4.2 Length

This property returns the number of characters in a string.

Syntax

Use the following syntax to find the length of a string:

string.length

Return Value
Returns the number of characters in the string.

Example

<html>

<head>

<title>JavaScript String length Property</title>

</head>

<body>

<script type="text/javascript">

var str = new String("This is string");

document.write("str.length is:" + str.length);

</script>

</body>

</html>

Output

Odisha State Open University Page 70

6.4.3 String Methods

Here is a list of the methods available in String object along with their description.

Method Description

charAt() Returns the character at the specified index.

charCodeAt() Returns a number indicating the Unicode value of

the character at the given index.

concat()

Combines the text of two strings and returns a

new string.

indexOf()

Returns the index within the calling String object

of the first occurrence of the specified value, or -1

if not found.

lastIndexOf()

Returns the index within the calling String object

of the last occurrence of the specified value, or -1

if not found.

localeCompare()

Returns a number indicating whether a reference

string comes before or after or is the same as the

given string in sorted order.

match()

Used to match a regular expression against a

string.

replace()

Used to find a match between a regular expression

and a string, and to replace the matched substring

with a new substring.

toString()

Returns a string representing the specified object.

toLowerCase()

Returns the calling string value converted to lower

case.

toUpperCase()

Returns the calling string value converted to

uppercase.

6.4.4 toLocaleUppereCase ()

This method is used to convert the characters within a string to uppercase while

respecting the current locale. For most languages, it returns the same output as

toUpperCase.

Syntax

Its syntax is as follows:

Odisha State Open University Page 71

string.toLocaleUpperCase()

Return Value

Returns a string in uppercase with the current locale.

Example

The following example.

<html>

<head>

<title>JavaScript String toLocaleUpperCase() Method</title>

</head>

<body>

<script type="text/javascript">

var str = "Apples are round, and Apples are Juicy.";

document.write(str.toLocaleUpperCase());

</script>

</body>

</html>

Output

6.5 Array and Array Management

The Array object lets you store multiple values in a single variable. It stores a

fixed-size sequential collection of elements of the same type. An array is used to

store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

Syntax
Use the following syntax to create an Arr ay Object.

var fruits = new Array("apple", "orange", "mango");

The Array parameter is a list of strings or integers. When you specify a single

numeric parameter with the Array constructor, you specify the initial length of the

array. The maximum length allowed for an array is 4,294,967,295. You can create

array by simply assigning values as follows:

var fruits = ["apple", "orange", "mango"];

Odisha State Open University Page 72

You will use ordinal numbers to access and to set values inside an array as

follows.

fruits[0] is the first element

fruits[1] is the second element

fruits[2] is the third element

6.5.1 Array Properties

Here is a list of the properties of the Array object along with their description.

Property Description

constructor Returns a reference to the array function that created the

object.

index The property represents the zero-based index of the match

in the string

input

This property is only present in arrays created by regular

expression matches.

length

Reflects the number of elements in an array.

prototype

The prototype property allows you to add properties and

methods to an object.

6.5.2 Constructor
JavaScript array constructor property returns a reference to the array function

that created the instance's prototype.

Syntax
Its syntax is as follows:

array.constructor

Return Value

Returns the function that created this object's instance.

Example

The following example.

<html>

<head>

<title>JavaScript Array constructor Property</title>

</head>

<body>

<script type="text/javascript">

var arr = new Array(10, 20, 30);

document.write("arr.constructor is:" + arr.constructor);

</script>

</body>

</html>

Odisha State Open University Page 73

6.5.3 Array Methods

Here is a list of the methods of the Array object along with their description.

Method Description

concat() Returns a new array comprised of this

array joined with other array(s) and/or

value(s).

every() Returns true if every element in this

array satisfies the provided testing

function.

filter() Creates a new array with all of the

elements of this array for which the

provided filtering function returns true.

forEach() Calls a function for each element in the

array.

indexOf() Returns the first (least) index of an

element within the array equal to the

specified value, or -1 if none is found.

join() Joins all elements of an array into a

string.

lastIndexOf() Returns the last (greatest) index of an

element within the array equal to the

specified value, or -1 if none is found.

map() Creates a new array with the results of

calling a provided function on every

element in this array.

pop() Removes the last element from an array

and

push() Adds one or more elements to the end of

an array and returns the new length of

the array.

reduce() Apply a function simultaneously against

two values of the array (from left-to-

right) as to reduce it to a single value.

reduceRight() Apply a function simultaneously against

two values of the array (from right-to-

left) as to reduce it to a single value.

reverse() Reverses the order of the elements of an

array -- the first becomes the last, and

the last becomes the first.

shift() Removes the first element from an array

and returns that element.

slice() Extracts a section of an array and returns

a new array.

some() Returns true if at least one element in

this array satisfies the provided testing

function.

toSource() Represents the source code of an object

Odisha State Open University Page 74

sort() Sorts the elements of an array.

splice() Adds and/or removes elements from an

array.

toString() Returns a string representing the array

and its elements.

unshift() Adds one or more elements to the front

of an array and returns the new length of

the array.

6.5.4 Concat()

Javascript array concat() method returns a new array comprised of this array

joined with two or more arrays.

Syntax
The syntax of concat() method is as follows:

array.concat(value1, value2, ..., value n);

Parameter Details
valueN : Arrays and/or values to concatenate to the resulting array.

Return Value
Returns the length of the array.

Example
The following example.

<html>

<head>

<title>JavaScript Array concat Method</title>

</head>

<body>

<script type="text/javascript">

var alpha = ["a", "b", "c"];

var numeric = [1, 2, 3];

var alphaNumeric = alpha.concat(numeric);

document.write("alphaNumeric : " + alphaNumeric);

</script>

</body>

</html>

Output

Odisha State Open University Page 75

6.6 Working with Date

The Date object is a datatype built into the JavaScript language. Date objects are

created with the new Date() as shown below. Once a Date object is created, a

number of methods allow you to operate on it. Most methods simply allow you to

get and set the year, month, day, hour, minute, second, and millisecond fields of

the object, using either local time or UTC (universal, or GMT) time.

The ECMA Script standard requires the Date object to be able to represent any

date and time, to millisecond precision, within 100 million days before or after

1/1/1970. This is a range of plus or minus 273,785 years, so JavaScript can

represent date and time till the year 275755.

Syntax

You can use any of the following syntaxes to create a Date object using Date()

constructor.

new Date()

new Date(milliseconds)

new Date(datestring)

new Date(year,month,date[,hour,minute,second,millisecond])

Note: Parameters in the brackets are always optional.

Here is a description of the parameters:

ü No Argument: With no arguments, the Date() constructor creates a Date

object set to the current date and time.

ü milliseconds: When one numeric argument is passed, it is taken as the

internal numeric representation of the date in milliseconds, as returned by

the getTime() method. For example, passing the argument 5000 creates a

date that represents five seconds past midnight on 1/1/70.

ü datestring: When one string argument is passed, it is a string

representation of a date, in the format accepted by the Date.parse()

method.

ü 7 agruments: To use the last form of the constructor shown above. Here

is a description of each argument:

ü year: Integer value representing the year. For compatibility (in order to

avoid the Y2K problem), you should always specify the year in full; use

1998, rather than 98.

ü month: Integer value representing the month, beginning with 0 for

January to 11 for December.

ü date: Integer value representing the day of the month.

ü hour: Integer value representing the hour of the day (24-hour scale).

ü minute: Integer value representing the minute segment of a time reading.

ü second: Integer value representing the second segment of a time reading.

ü millisecond: Integer value representing the millisecond segment of a

time reading.

Odisha State Open University Page 76

6.6.1 Date Properties

Here is a list of the properties of the Date object along with their description.

Property Description

constructor Specifies the function that creates an object's

prototype.

prototype The prototype property allows you to add

properties and methods to an object.

6.6.2 Constructor
JavaScript date constructor property returns a reference to the array function that

created the instance's prototype.

Syntax
Its syntax is as follows:

date.constructor

Return Value
Returns the function that created this object's instance.

Example

The following example.

<html>

<head>

<title>JavaScript Date constructor Property</title>

</head>

<body>

<script type="text/javascript">

var dt = new Date();

document.write("dt.constructor is : " + dt.constructor);

</script>

</body>

</html>

6.6.3 Date Methods

Here is a list of the methods used with Date and their description.

Method Description

Date() Returns today's date and time

getDate() Returns the day of the month for the specified date

according to local time.

getDay() Returns the day of the week for the specified date

according to local time.

getFullYear() Returns the year of the specified date according to local

time.

getHours() Returns the hour in the specified date according to local

time.

Odisha State Open University Page 77

getMilliseconds() Returns the milliseconds in the specified date according

to local time.

getMinutes() Returns the minutes in the specified date according to

local time.

getMonth() Returns the month in the specified date according to

local time.

getSeconds() Returns the seconds in the specified date according to

local time.

getTime() Returns the numeric value of the specified date as the

number of milliseconds since January 1, 1970, 00:00:00

UTC.

getTimezoneOffset

()

Returns the time-zone offset in minutes for the current

locale.

getUTCDate() Returns the day (date) of the month in the specified date

according to universal time.

getUTCDay() Returns the day of the week in the specified date

according to universal time.

getUTCFullYear() Returns the year in the specified date according to

universal time.

getUTCHours() Returns the hours in the specified date according to

universal time.

getUTCMillisecon

ds()

Returns the milliseconds in the specified date

according to universal time.

setUTCMonth() Sets the month for a specified date according to

universal time.

setUTCSeconds() Sets the seconds for a specified date according to

universal time.

setYear() Deprecated - Sets the year for a specified date

according to local time. Use setFullYear instead.

toDateString() Returns the "date" portion of the Date as a human-

readable string.

toGMTString() Deprecated - Converts a date to a string, using the

Internet GMT conventions. Use toUTCString instead.

toLocaleDateStrin

g()

Returns the "date" portion of the Date as a string, using

the current locale's conventions.

toLocaleFormat() Converts a date to a string, using a format string.

toLocaleString() Converts a date to a string, using the current locale's

conventions.

toLocaleTimeStrin

g()

Returns the "time" portion of the Date as a string, using

the current locale's conventions.

toSource() Returns a string representing the source for an

equivalent Date object; you can use this value to create

a new object.

toString() Returns a string representing the specified Date object.

toTimeString() Returns the "time" portion of the Date as a human-

readable string.

Odisha State Open University Page 78

toUTCString() Converts a date to a string, using the universal

time convention.

valueOf() Returns the primitive value of a Date object.

6.6.4 Date()
Javascript Date() method returns today's date and time and does not need any

object to be called.

Syntax
Its syntax is as follows:

Date()

Return Value
Returns today's date and time.

Example

The following example.

<html>

<head>

<title>JavaScript Date Method</title>

</head>

<body>

<script type="text/javascript">

var dt = Date();

document.write("Date and Time : " + dt);

</script>

</body>

</html>

Output

6.7 Doing Mathematical Operation

The math object provides you properties and methods for mathematical constants

and functions. Unlike other global objects, Math is not a constructor. All the

properties and methods of Math are static and can be called by using Math as an

object without creating it.

Thus, you refer to the constant pi as Math.PI and you call the sine function as

Math.sin(x), where x is the method's argument.

Syntax

The syntax to call the properties and methods of Math are as follows:

Odisha State Open University Page 79

var pi_val = Math.PI;

var sine_val = Math.sin(30);

6.7.1 Math Properties

Here is a list of all the properties of Math and their description.

6.7.2 Math-E

This is an Euler's constant and the base of natural logarithms, approximately

2.718.

Syntax
Its syntax is as follows:

Math.E

Example

The following example program.

<html>

<head>

<title>JavaScript Math E Property</title>

</head>

<body>

<script type="text/javascript">

var property_value = Math.E

document.write("Property Value is :" + property_value);

</script>

</body>

</html>

Property Description

E Euler's constant and the base of natural

logarithms, approximately 2.718.

LN2 Natural logarithm of 2, approximately

0.693.

LN10 Natural logarithm of 10, approximately

2.302.

LOG2E Base 2 logarithm of E, approximately

1.442.

LOG10E Base 10 logarithm of E, approximately

0.434.

PI Ratio of the circumference of a circle to its

diameter, approximately 3.14159.

SQRT1_2 Square root of 1/2; equivalently, 1 over the

square root of 2, approximately 0.707.

SQRT2 Square root of 2, approximately 1.414.

Odisha State Open University Page 80

Output

6.7.3 Math Methods

Here is a list of the methods associated with Math object and their description.

Method Description

abs() Returns the absolute value of a number.

acos() Returns the arccosine (in radians) of a

number.

asin() Returns the arcsine (in radians) of a number.

atan() Returns the arctangent (in radians) of a

number.

atan2() Returns the arctangent of the quotient of its

arguments.

ceil() Returns the smallest integer greater than or

equal to a number.

cos() Returns the cosine of a number.

exp() Returns EN, where N is the argument, and E

is Euler's constant, the base of the natural

logarithm.

floor() Returns the largest integer less than or equal

to a number

log() Returns the natural logarithm (base E) of a

number.

max() Returns the largest of zero or more numbers.

min() Returns the smallest of zero or more

numbers.

pow() Returns base to the exponent power, that is,

base exponent.

random() Returns a pseudo-random number between 0

and 1.

round() Returns the value of a number rounded to the

nearest integer.

sin() Returns the sine of a number.

sqrt() Returns the square root of a number.

tan() Returns the tangent of a number.

toSource() Returns the string "Math".

Odisha State Open University Page 81

6.7.4 sqrt ()

This method returns the square root of a number. If the value of a number is

negative, sqrt returns NaN.

Syntax
Its syntax is as follows:

Math.sqrt (x);

Parameter Details
x: A number.

Return Value
Returns the square root of a given number.

Example

The following example program.

<html>

<head>

<title>JavaScript Math sqrt() Method</title>

</head>

<body>

<script type="text/javascript">

var value = Math.sqrt(0.2);

document.write("First Test Value : " + value);

var value = Math.sqrt(81);

document.write("
Second Test Value : " + value);

var value = Math.sqrt(13);

document.write("
Third Test Value : " + value);

var value = Math.sqrt(-4);

document.write("
Fourth Test Value : " + value);

</script>

</body>

</html>

Output

Odisha State Open University Page 82

 CHECK YOUR PROGRESS 1

Q1. What are the four capabilities of oop ?

Answer:__

Q2. Write the use of New Operator ?

Answer:__

Q3. Which method returns the square root of a number?

Answer:__

Q4. Which method returns the absolute value of a number?

Answer:__

Q5. Which property returns a reference to the array function that created the

instance's prototype in java script?

Answer:__

Q6. What is array ?

Answer:__

Q7. What is String?

Answer:__

Q8. How many values represents by Boolean object?

Answer:__

Odisha State Open University Page 83

6.8 Working with Regular Expression

A regular expression is an object that describes a pattern of characters. The

JavaScript RegExpclass represents regular expressions, and both String and

RegExpdefine methods that use regular expressions to perform powerful pattern-

matching and search-and-replace functions on text.

Syntax
A regular expression could be defined with the RegExp() constructor, as follows:

var pattern = new RegExp(pattern, attributes);

The description of the parameters:

ü pattern: A string that specifies the pattern of the regular expression or another

regular expression.

ü attributes: An optional string containing any of the "g", "i", and "m"

attributes that specify global, case-insensitive, and multiline matches,

respectively

Brackets

Brackets ([]) have a special meaning when used in the context of regular

expressions.

Expression Description

[...] Any one character between the brackets.

[^...] Any one character not between the brackets

[0-9] It matches any decimal digit from 0 through 9.

[a-z] It matches any character from lowercase a through

lowercase z.

[A-Z] It matches any character from uppercase A through

uppercase Z.

[a-Z] It matches any character from lowercase a through

uppercase Z.

Odisha State Open University Page 84

6.8.1 RegExp Properties

Here is a list of the properties associated with RegExp and their description

Property Description

constructo

r

Specifies the function that creates an object's

prototype.

global Specifies if the "g" modifier is set.

ignoreCas

e

Specifies if the "i" modifier is set

.

lastIndex The index at which to start the next match.

multiline Specifies if the "m" modifier is set.

source The text of the pattern

6.8.2 Multiline

Multiline is a read-only boolean property of RegExp objects. It specifies whether

a particular regular expression performs multiline matching, i.e., whether it was

created with the "m" attribute.

Syntax
Its syntax is as follows:

RegExpObject.multiline

Return Value

Returns "TRUE" if the "m" modifier is set, "FALSE" otherwise.

Example

<html>

<head>

<title>JavaScript RegExp multiline Property</title>

</head>

<body>

<script type="text/javascript">

var re = new RegExp("string");

if (re.multiline){

document.write("Test1-multiline property is set");

}else{

document.write("Test1-multiline property is not set");

}

re = new RegExp("string", "m");

if (re.multiline){

document.write("
Test2-multiline property is set");

}else{

document.write("
Test2-multiline property is not set");

}

Odisha State Open University Page 85

</script>

</body>

</html>

output

6.8.3.RegExp Methods

Method Description

exec() Executes a search for a match in its string parameter.

test() Tests for a match in its string parameter.

toSource() Returns an object literal representing the specified

object; you can use this value to create a new object.

toString() Returns a string representing the specified object.

6.8.4 Test ()
The test method searches string for text that matches regexp. If it finds a match, it

returns true; otherwise, it returns false.

Syntax
Its syntax is as follows:

RegExpObject.test(string);

Parameter Details
string: The string to be searched.

Return Value

Returns the matched text if a match is found, and null if not.

Example

<html>

<head>

<title>JavaScript RegExp test Method</title>

</head>

<body>

<script type="text/javascript">

var str = "Javascript is interesting scripting language: Trisha pattnaik";

var re = new RegExp("script", "g");

var result = re.test(str);

document.write("Test 1 - returned value : " + result);

re = new RegExp("pushing", "g");

var result = re.test(str);

Odisha State Open University Page 86

document.write("
Test 2 - returned value : " + result);

</script>

</body>

</html>

Output

6.9 Document Object Model (DOM)

OA Document object represents the HTML document that is displayed in that

window. The Document object has various properties that refer to other objects

which allow access to and modification of document content.

The way a document content is accessed and modified is called the Document

Object Model, or DOM . The Objects are organized in a hierarchy. This

hierarchical structure applies to the organization of objects in a Web document.

ü Window object: Top of the hierarchy. It is the outmost element of the object

hierarchy.

ü Document object: Each HTML document that gets loaded into a window

becomes a document object. The document contains the contents of the page.

ü Form object: Everything enclosed in the <form>...</form> tags sets the form

object.

ü Form control elements: The form object contains all the elements defined for

that object such as text fields, buttons, radio buttons, and checkboxes.

6.9.1 The Legacy DOM

This is the model which was introduced in early versions of JavaScript language.

It is well supported by all browsers, but allows access only to certain key portions

of documents, such as forms, form elements, and images.

This model provides several read-only properties, such as title, URL, and last

Modified provide information about the document as a whole. Apart from that,

there are various methods provided by this model which can be used to set and get

document property values.

Odisha State Open University Page 87

6.9.2 Document Properties in Legacy DOM

Here is a list of the document properties which are

Sl.No Property and Description

1 alinkColor

Deprecated - A string that specifies the color of

activated links.

Ex: document.alinkColor

2 anchors[]

An array of Anchor objects, one for each

anchor that appears in the document

Ex: document.anchors[0], document.anchors[1] and so

on

3 applets[]

An array of Applet objects, one for each applet

that appears in the document

Ex: document.applets[0], document.applets[1]

and so on

4 bgColor

Deprecated - A string that specifies the

background color of the document.

Ex: document.bgColor

5 Cookie

A string valued property with special behavior

that allows the cookies associated with this

document to be queried and set.

Ex: document.cookie

6 Domain

A string that specifies the Internet domain the

document is from. Used for security purpose.

Ex: document.domain

7 embeds[]

An array of objects that represent data

embedded in the document with the <embed>

tag. A synonym for plugins []. Some plugins

and ActiveX controls can be controlled with

JavaScript code.

Ex: document.embeds[0],

document.embeds[1]

Odisha State Open University Page 88

6.9.2 Document Methods in Legacy DOM

Here is a list of methods supported by Legacy DOM.

S.No Property and Description

1 clear()

Deprecated - Erases the contents of the document and

returns nothing.

Ex: document.clear()

2 close()

Closes a document stream opened with the open() method

and returns nothing.

3 open()

Deletes existing document content and opens a stream to

which new document contents may be written. Returns

nothing.

Ex: document.open()

4 write(value, ...)

Inserts the specified string or strings into the document

currently being parsed or appends to document opened with

open(). Returns nothing.

Ex: document.write(value, ...)

5 writeln(value, ...)

Identical to write(), except that it appends a newline

character to the output. Returns nothing.

Ex: document.writeln(value, ...)

Example:

<html>

<head>

<title> Document Title </title>

<script type="text/javascript">

<!--

functionmyFunc()

{

var ret = document.title;

alert("Document Title : " + ret);

var ret = document.URL;

alert("Document URL : " + ret);

var ret = document.forms[0];

alert("Document First Form : " + ret);

var ret = document.forms[0].elements[1];

alert("Second element : " + ret);

}

//-->

</script>

Odisha State Open University Page 89

</head>

<body>

<h1 id="title">This is my java program: TEJWASH MOHANTY </h1>

<p>Click the following to see the result:</p>

<form name="FirstForm">

<input type="button" value="Click Me" onclick="myFunc();" />

<input type="button" value="Cancel">

</form>

<form name="SecondForm">

<input type="button" value="Don't ClickMe"/>

</form>

</body>

</html>

Output

6.10 Error and Error Handling

There are three types of errors in programming: (a) Syntax Errors, (b) Runtime

Errors, and (c) Logical Errors.

Syntax Errors

Syntax errors, also called parsing errors, occur at compile time in traditional

programming languages and at interpret time in JavaScript

Runtime Errors

Runtime errors, also called exceptions, occur during execution (after

compilation/interpretation).

Logical Errors

Logic errors can be the most difficult type of errors to track down. These errors

are not the result of a syntax or runtime error. Instead, they occur when you make

a mistake in the logic that drives your script and you do not get the result you

expected.

The try...catch...finallyStatement

Odisha State Open University Page 90

The latest versions of JavaScript added exception handling capabilities. JavaScript

implements the try...catch...finally construct as well as the throw operator to

handle exceptions.

You can catch programmer-generated and runtime exceptions, but you cannot

catch JavaScript syntax errors.

Here is the try...catch...finally block syntax:

<script type="text/javascript">

<!--

try {

// Code to run

[break;]

} catch (e) {

// Code to run if an exception occurs

[break;]

}[finally {

// Code that is always executed regardless of

// an exception occurring

}]

//-->

</script>

Example

<html>

<head>

<script type="text/javascript">

<!--

functionmyFunc()

{

var a = 100;

document.write ("Value of variable a is : " + a);

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

<form>

<input type="button" value="Click Me" onclick="myFunc();" />

</form>

<p>Error will happen and depending on your browser: trisha.</p>

</body>

</html>

Odisha State Open University Page 91

OUTPUT

6.11 Client side validation

Validation normally used to occur at the server, after the client had entered all the

necessary data and then pressed the Submit button. If the data entered by a client

was incorrect or was simply missing, the server would have to send all the data

back to the client and request that the form be resubmitted with correct

information. This was really a lengthy process which used to put a lot of burden

on the server.

JavaScript provides a way to validate form's data on the client's computer before

sending it to the web server. Form validation generally performs two functions.

ü Basic Validation - First of all, the form must be checked to make sure all

the mandatory fields are filled in. It would require just a loop through each

field in the form and check for data.

ü Data Format Validation - Secondly, the data that is entered must be

checked for correct form and value. Your code must include appropriate

logic to test correctness of data.

Example

We will take an example to understand the process of validation. Here is a

simple form in html format.

<html>

<head>

<title>Form Validation</title>

<script type="text/javascript">

<!--

// Form validation code will come here.

//-->

</script>

</head>

<body>

<form action="/cgi-bin/test.cgi" name="myForm"

Odisha State Open University Page 92

onsubmit="return(validate());">

<table cellspacing="2" cellpadding="2" border="1">

<tr>

<td align="right">Name</td>

<td><input type="text" name="Name" /></td>

</tr>

<tr>

<td align="right">EMail</td>

<td><input type="text" name="EMail" /></td>

</tr>

<tr>

<td align="right">Zip Code</td>

<td><input type="text" name="Zip" /></td>

</tr>

<tr>

<td align="right">Country</td>

<td>

<select name="Country">

<option value="-1" selected>[choose yours]</option>

<option value="1">USA</option>

<option value="2">UK</option>

<option value="3">INDIA</option>

</select>

</td>

</tr>

<tr>

<td align="right"></td>

<td><input type="submit" value="Submit" /></td>

</tr>

</table>

</form>

</body>

</html>

Output

Odisha State Open University Page 93

6.11.1 Basic Form Validation

First let us see how to do a basic form validation. In the above form, we are

calling validate() to validate data when onsubmit event is occurring. The

following code shows the implementation of this validate() function.

<script type="text/javascript">

<!--

// Form validation code will come here.

function validate()

{

if(document.myForm.Name.value == "")

{

alert("Please provide your name!");

document.myForm.Name.focus() ;

return false;

}

if(document.myForm.EMail.value == "")

{

alert("Please provide your Email!");

document.myForm.EMail.focus() ;

return false;

}

if(document.myForm.Zip.value == "" ||

isNaN(document.myForm.Zip.value) ||

document.myForm.Zip.value.length != 5)

{

alert("Please provide a zip in the format #####.");

document.myForm.Zip.focus() ;

return false;

}

if(document.myForm.Country.value == "-1")

{

alert("Please provide your country!");

return false;

}

return(true);

}

//-->

</script>

6.11.2 Data Format Validation

Now we will see how we can validate our entered form data before submitting it

to the web server.

The following example shows how to validate an entered email address. An email

address must contain at least a ó@ô sign and a dot (.). Also, the ó@ô must not be

the first character of the email address, and the last dot must at least be one

character after the ó@ô sign.

Example

<script type="text/javascript">

Odisha State Open University Page 94

<!--

function validateEmail()

{

var emailID = document.myForm.EMail.value;

atpos = emailID.indexOf("@");

dotpos = emailID.lastIndexOf(".");

if (atpos < 1 || (dotpos - atpos < 2))

{

alert("Please enter correct email ID")

document.myForm.EMail.focus() ;

return false;

}

return(true);

}

//-->

</script>

6.12 Animation in webpages

You can use JavaScript to create a complex animation having, but not limited to,

the following elements:

ü Fireworks

ü Fade Effect

ü Roll-in or Roll-out

ü Page-in or Page-out

ü Object movements

JavaScript can be used to move a number of DOM elements (, <div>, or

any other HTML element) around the page according to some sort of pattern

determined by a logical equation or function.

JavaScript provides the following two functions to be frequently used in

animation programs.

ü setTimeout (function, duration) - This function calls function after

duration milliseconds from now.

ü setInterval (function, duration) - This function calls function after

every duration milliseconds.

ü clearTimeout (setTimeout_variable) - This function clears any timer

set by the setTimeout() function.

JavaScript can also set a number of attributes of a DOM object including its

position on the screen. You can set top and left attribute of an object to position it

anywhere on the screen. Here is its syntax.

// Set distance from left edge of the screen.

object.style.left = distance in pixels or points;

or
// Set distance from top edge of the screen.

object.style.top = distance in pixels or points;

Odisha State Open University Page 95

6.12.1 Manual Animation

So let's implement one simple animation using DOM object properties and

JavaScript functions as follows. The following list contains different DOM

methods.

ü We are using the JavaScript function getElementById() to get a DOM

object and then assigning it to a global variable imgObj .

ü We have defined an initialization function init() to initialize imgObj

where we have set its position and left attributes.

ü We are calling initialization function at the time of window load.

ü Finally, we are calling moveRight() function to increase the left distance

by 10 pixels. You could also set it to a negative value to move it to the left

Example

The following example.

<html>

<head>

<title>JavaScript Animation</title>

<script type="text/javascript">

<!--

var imgObj = null;

function init(){

imgObj = document.getElementById('myImage');

imgObj.style.position= 'relative';

imgObj.style.left = '0px';

}

function moveRight(){

imgObj.style.left = parseInt(imgObj.style.left) + 10 + 'px';

}

window.onload =init;

//-->

</script>

</head>

<body>

<form>

<p>Click button below to move the image to right</p>

<input type="button" value="Click Me" onclick="moveRight();"

/>

</form>

</body>

</html>

Odisha State Open University Page 96

Output

6

6.12.2 Automated Animation
In the above example, we saw how an image moves to right with every click. We

can automate this process by using the JavaScript function setTimeout() as

follows. Here we have added more methods. So let's see what is new here:

ü The moveRight() function is calling setTimeout() function to set the

position of imgObj.

ü We have added a new function stop() to clear the timer set by

setTimeout() function and to set the object at its initial position.

Example

The following example code.

<html>

<head>

<title>JavaScript Animation</title>

<script type="text/javascript">

<!--

var imgObj = null;

var animate ;

function init(){

imgObj = document.getElementById('myImage');

imgObj.style.position= 'relative';

imgObj.style.left = '0px';

}

Odisha State Open University Page 97

function moveRight(){

imgObj.style.left = parseInt(imgObj.style.left) + 10 + 'px';

animate = setTimeout(moveRight,20); // call moveRight in 20msec

}

function stop(){

clearTimeout(animate);

imgObj.style.left = '0px';

}

window.onload =init;

//-->

</script>

</head>

<body>

<form>

<p>Click the buttons below to handle animation</p>

<input type="button" value="Start" onclick="moveRight();" />

<input type="button" value="Stop" onclick="stop();" />

</form>

</body> </html>

Output

6.13 Multimedia in webpages

The JavaScript navigator object includes a child object called plugins. This

object is an array, with one entry for each plug-in installed on the browser. The

navigator.plugins object is supported only by Netscape, Firefox, and Mozilla only.

Example

Here is an example that shows how to list down all the plug-on installed in your

browser:

<html>

<head>

<title>List of Plug-Ins</title>

</head>

<body>

<table border="1">

<tr><th>Plug-in

Name</th><th>Filename</th><th>Description</th></tr>

Odisha State Open University Page 98

<script LANGUAGE="JavaScript" type="text/javascript">

for (i=0; i<navigator.plugins.length; i++) {

document.write("<tr><td>");

document.write(navigator.plugins[i].name);

document.write("</td><td>");

document.write(navigator.plugins[i].filename);

document.write("</td><td>");

document.write(navigator.plugins[i].description);

document.write("</td></tr>");

}

</script>

</table>

</body>

</html>

6.13.1 Checking for Plug-Ins

Each plug-in has an entry in the array. Each entry has the following properties:

ü name - is the name of the plug-in.

ü filename - is the executable file that was loaded to install the plug-in.

ü description - is a description of the plug-in, supplied by the developer.

ü mimeTypes - is an array with one entry for each MIME type supported

by the plug-in.

You can use these properties in a script to find out the installed plug-ins, and then

using JavaScript, you can play appropriate multimedia file. Take a look at the

following example.

<html>

<head>

<title>Using Plug-Ins</title>

</head>

<body>

<script language="JavaScript" type="text/javascript">

media = navigator.mimeTypes["video/quicktime"];

